

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Atiya, Amir]
On: 15 September 2010
Access details: Access Details: [subscription number 926965465]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Econometric Reviews
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597248

An Empirical Comparison of Machine Learning Models for Time Series
Forecasting
Nesreen K. Ahmeda; Amir F. Atiyab; Neamat El Gayarc; Hisham El-Shishinyd

a Department of Computer Science, Purdue University, West Lafayette, Indiana, USA b Department of
Computer Engineering, Cairo University, Giza, Egypt c Faculty of Computers and Information, Cairo
University, Giza, Egypt d IBM Center for Advanced Studies in Cairo, IBM Cairo Technology
Development Center, Giza, Egypt

Online publication date: 15 September 2010

To cite this Article Ahmed, Nesreen K. , Atiya, Amir F. , Gayar, Neamat El and El-Shishiny, Hisham(2010) 'An Empirical
Comparison of Machine Learning Models for Time Series Forecasting', Econometric Reviews, 29: 5, 594 — 621
To link to this Article: DOI: 10.1080/07474938.2010.481556
URL: http://dx.doi.org/10.1080/07474938.2010.481556

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597248
http://dx.doi.org/10.1080/07474938.2010.481556
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Econometric Reviews, 29(5–6):594–621, 2010
Copyright © Taylor & Francis Group, LLC
ISSN: 0747-4938 print/1532-4168 online
DOI: 10.1080/07474938.2010.481556

AN EMPIRICAL COMPARISON OF MACHINE LEARNING
MODELS FOR TIME SERIES FORECASTING

Nesreen K. Ahmed1, Amir F. Atiya2, Neamat El Gayar3,
and Hisham El-Shishiny4

1Department of Computer Science, Purdue University, West Lafayette, Indiana, USA
2Department of Computer Engineering, Cairo University, Giza, Egypt
3Faculty of Computers and Information, Cairo University, Giza, Egypt
4IBM Center for Advanced Studies in Cairo, IBM Cairo Technology
Development Center, Giza, Egypt

� In this work we present a large scale comparison study for the major machine learning
models for time series forecasting. Specifically, we apply the models on the monthly M3 time
series competition data (around a thousand time series). There have been very few, if any,
large scale comparison studies for machine learning models for the regression or the time series
forecasting problems, so we hope this study would fill this gap. The models considered are
multilayer perceptron, Bayesian neural networks, radial basis functions, generalized regression
neural networks (also called kernel regression), K-nearest neighbor regression, CART regression
trees, support vector regression, and Gaussian processes. The study reveals significant differences
between the different methods. The best two methods turned out to be the multilayer perceptron
and the Gaussian process regression. In addition to model comparisons, we have tested different
preprocessing methods and have shown that they have different impacts on the performance.

Keywords Comparison study; Gaussian process regression; Machine learning models; Neural
network forecasting; Support vector regression.

JEL Classification C45; C4.

1. INTRODUCTION

Machine learning models have established themselves in the last
decade as serious contenders to classical statistical models in the area
of forecasting. Research started in the eighties with the development of

Address correspondence to Amir F. Atiya, Department of Computer Engineering, Cairo
University, Giza, Egypt; E-mail: amir@alumni.caltech.edu

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 595

the neural network model. Subsequently, research extended the concept
to other models, such as support vector machines, decision trees, and
others, that are collectively called machine learning models (Alpaydin,
2004; Hastie et al., 2001). Some of these models trace their origins from
the early statistics literature (see Hastie et al., 2001 for a discussion). There
have been impressive advances in this field in the past few years, both
in the theoretical understanding of the models and in the amount and
variations of the models developed. In addition to model development
and analysis there has to be a parallel effort of empirically validating the
numerous existing models and comparing their performance. This would
be of immense value to the practitioner, as it would narrow down his
possible choices, and give him insight into the strong and weak points
of the available models. In addition, this would also help to channel the
research effort into the more promising tracks.

Large scale studies for comparing machine learning models have
focused almost exclusively on the classification domain (Caruana and
Niculescu-Mizil, 2006). We have found no extensive study for regression
problems. There have been numerous comparison studies that compare
neural networks with traditional linear techniques for forecasting and
other econometric problems. For example, Sharda and Patil (1992) have
compared neural networks to ARIMA on the M-competition time series
data. Hill et al. (1996) have also considered the M-competition data
and have compared between neural networks and traditional methods.
Swanson and White (1995) have applied their comparison on nine U.S.
macroeconomic series. Alon et al. (2001) have analyzed neural networks
versus other traditional methods such as Winters exponential smoothing,
Box–Jenkins ARIMA and multivariate regression, on retail sales data.
Callen et al. (1996) have compared between neural networks and linear
models for 296 quarterly earnings time series. Zhang et al. (2004) have
considered a similar problem, but have added some additional accounting
variables. Terasvirta et al. (2005) consider neural networks, smooth
transition autoregressions, and linear models for 47 macroeconomic series.
The outcome of all these studies has been somewhat mixed, but overall
neural networks tended more to outperform classical linear techniques.

The problem is that these studies are confined to only the basic
neural network model, and do not extend to the novel machine learning
models. This, in fact, is the subject of this study. We conduct a large scale
comparison study of a variety of machine learning models applied to the
M3 competition data (M3 Competition, 2008). The M3 competition is the
latest in a sequel of M forecasting competitions, organized by Makridakis
and Hibon (2000). It consists of 3003 business-type time series, covering
the types of micro, industry, finance, demographic, and others. There are
yearly, quarterly, and monthly time series. In this study, we consider only
the monthly time series, as quarterly and yearly time series were generally

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

596 N. K. Ahmed et al.

too short. The M3 data has become an important benchmark for testing
and comparing forecasting models. Having that many diverse time series
gives confidence into comparison results. The training period for the
considered time series ranges in length from 63 to 108 data points, so the
comparison study will generally apply to the kinds of monthly business time
series of this length range.

In this study, we have compared the following models: multilayer
perceptron, Bayesian neural networks, radial basis functions, generalized
regression neural networks (also called kernel regression), K-nearest
neighbor regression, CART regression trees, support vector regression, and
Gaussian processes. Another focus of the study is to examine preprocessing
methods, used in conjunction with the machine learning forecasting
models. Preprocessing steps such as deseasonalization, taking the log
transformation, and detrending have been studied before in the literature
(Balkin and Ord, 2000; Ghysels et al., 1996; Miller and Williams, 2004;
Zhang and Qi, 2005; Zhang et al., 2004). These methods will, therefore,
not be the focus of the comparison study. The goal in this study is
to compare other preprocessing strategies that are frequently used with
machine learning models, such as differencing the time series, and taking
moving averages.

To summarize the findings of the paper the overall ranking of the
models from best to worse turned out to be about: multilayer perceptron,
Gaussian processes, then Bayesian neural networks and support vector
regression almost similar, then generalized regression neural networks and
K-nearest neighbor regression about tied, CART regression trees, then in
the last spot radial basis functions. This ranking is generally broad-based
and does not change much with different categories or features of the
time series. The preprocessing method can also have a large impact on
performance.

The article is organized as follows. Next section we present a brief
description of the compared models. Section 3 describes the tested
preprocessing methods. Section 4 deals with the issue of how to set the
model parameters. In Section 5 we describe the details of the simulations
setup. Following that, in Section 6 we present the comparison results.
Section 7 gives some comments on the results, and finally Section 8
presents the conclusion of the article.

2. MODELS

For each considered model there are myriads of variations proposed
in the literature, and it would be a hopeless task to consider all existing
varieties. Our strategy was therefore to consider the basic version of
each model (without the additions, or the modifications proposed by so
many researchers). The rationale is that most users will more likely opt

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 597

(at least in their first try) to consider the basic form. For example for
the K-nearest neighbor model (KNN), we used the basic form where the
target outputs of the K-neighbors are equally weighted. There are many
other variations, such as distance weighted KNN, flexible metric KNN,
non-Euclidean distance-based, and so on, but we did not consider these
variants.

The reason for generally selecting these considered eight models is
that they are some of the most commonly used models. Below is a short
description of the models considered.

2.1. Multilayer Perceptron (MLP)

The multilayer perceptron (often simply called neural network) is
perhaps the most popular network architecture in use today both for
classification and regression (Bishop, 1995). The MLP is given as follows:

ŷ = v0 +
NH∑
j=1

vjg
(
wT

j x
′), (1)

where x ′ is the input vector x , augmented with 1, i.e., x ′ = (1, xT)T , wj is
the weight vector for j th hidden node, v0, v1, � � � , vNH are the weights for
the output node, and ŷ is the network output. The function g represents
the hidden node output, and it is given in terms of a squashing function,
for example (and that is what we used) the logistic function: g (u) = 1/(1 +
exp(−u)). A related model in the econometrics literature is the smooth
transition autoregression model that is also based on constructing linear
functions and logistic function transitions (Medeiros and Veiga, 2000; van
Dijk et al., 2002).

The MLP is a heavily parametrized model, and by selecting the number
of hidden nodes NH we can control the complexity of the model. The
breakthrough that lent credence to the capability of neural networks is
the universal approximation property (Cybenko, 1989; Funahashi, 1989;
Hornik et al., 1989; Leshno et al., 1993). Under certain mild conditions on
the hidden node functions g , any given continuous function on a compact
set can be approximated as close as arbitrarily given using a network with
a finite number of hidden nodes. While this is a reassuring result, it is
critical to avoid overparametrization, especially in forecasting applications
which typically have a limited amount of highly noisy data. Model selection
(via selecting the number of hidden nodes) has therefore attracted much
interest in the neural networks literature (see Anders and Korn, 1999;
Medeiros et al., 2006 for example). We use a K-fold validation procedure
to select the number of hidden nodes, but the details of this (and any
parameter selection step) will be discussed in the next section.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

598 N. K. Ahmed et al.

To obtain the weights, the mean square error is defined, and
the weights are optimized using gradient techniques. The most well-
known method, based on the steepest descent concept, is the back-
propagation algorithm. A second order optimization method called
Levenberg Marquardt is generally known to be more efficient than the
basic back-propagation algorithm, and this is the one we used in our
implementation (we use the Matlab function trainlm).

2.2. Bayesian Neural Network (BNN)

A Bayesian neural network (BNN) is a neural network designed
based on a Bayesian probabilistic formulation (MacKay, 1992a,b). As such
BNN’s are related to the classical statistics concept of Bayesian parameter
estimation, and are also related to the concept of regularization such as in
ridge regression. BNN’s have enjoyed wide applicability in many areas such
as economics/finance (Gencay and Qi, 2001) and engineering (Bishop,
1995). The idea of BNN is to treat the network parameters or weights
as random variables, obeying some a priori distribution. This distribution
is designed so as to favor low complexity models, i.e., models producing
smooth fits. Once the data are observed, the posterior distribution of the
weights is evaluated and the network prediction can be computed. The
predictions will then reflect both the smoothness aspect imposed through
the prior and the fitness accuracy aspect imposed by the observed data.
A closely related concept is the regularization aspect, whereby the following
objective function is constructed and minimized

J = �ED + (1 − �)EW , (2)

where ED is the sum of the square errors in the network outputs, EW is the
sum of the squares of the network parameters (i.e., weights), and � is the
regularization parameter.

For the Bayesian approach, the typical choice of the prior is the
following normal density that puts more weight onto smaller network
parameter values

p(w) =
(
1 − �

�

) L
2

e−(1−�)EW , (3)

where L denotes the number of parameters (weights). The posterior is
then given by

p(w |D, �) = p(D |w, �)p(w | �)
p(D | �) , (4)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 599

where D represents the observed data. Assuming normaly distributed
errors, the probability density of the data given the parameters can be
evaluated as

p(D |w, �) =
(
�

�

)M
2

e−�ED , (5)

where M is the number of training data points. By substituting the
expressions for the densities in (3) and (5) into (4), we get

p(w |D, �) = c exp(−J), (6)

where c is some normalizing constant. The regularization constant � is also
determined using Bayesian concepts, from

p(� |D) = p(D | �)p(�)
p(D)

� (7)

Both expressions (6) and (7) should be maximized to obtain the optimal
weights and � parameter, respectively. The term p(D | �) in (7) is obtained
by a quadratic approximation of J in terms of the weights and then
integrating out the weights. We used the Matlab version version ‘trainbr’
for BNN (applied to a multilayer perceptron architecture). This routine
is based on the algorithm proposed by Foresee and Hagan (1997). This
algorithm utilizes the Hessian that is obtained any way in the Levenberg–
Marquardt optimization algorithm in approximating (7).

2.3. Radial Basis Function Neural Network (RBF)

The radial basis function network is similar in architecture to the
multilayer network except that the nodes have a localized activation
function (Moody and Darken, 1989; Powell, 1987). Most commonly, node
functions are chosen as Gaussian functions, with the width of the Gaussian
function controlling the smoothness of the fitted function. The outputs
of the nodes are combined linearly to give the final network output.
Specifically, the output is given by

y =
NB∑
j=1

wj e
− ‖x−cj ‖2

�2 , (8)

where wj , �, and cj denote respectively the combining weight, the width of
the node function, and the center of the node function for unit j . Because
of the localized nature of the node functions, other simpler algorithms
have been developed for training radial basis networks. The algorithm we

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

600 N. K. Ahmed et al.

used is the Matlab function (newrb). It is based on starting with a blank
network, and sequentially adding nodes until an acceptable error in the
training set is achieved. Specifically, we add a node centered around the
training pattern giving the maximum error. Then we recompute all the
output layer weights using the least squares formula. We continue this
way until the error limit is reached or the number of nodes reaches a
maximum predetermined value. While there are a variety of other RBF
training algorithms, we opted for this one due to its availability in the
Matlab suite, and hence it will be more likely selected by the user interested
in RBF’s.

2.4. Generalized Regression Neural Network (GRNN)

Nadaraya and Watson developed this model (Nadaraya, 1964; Watson,
1964). It is commonly called the Nadaraya–Watson estimator or the
kernel regression estimator. In the machine learning community, the term
generalized regression neural network (or GRNN) is typically used. We
will use this latter term. The GRNN model is a nonparametric model
where the prediction for a given data point x is given by the average of
the target outputs of the training data points in the vicinity of the given
point x (Hardle, 1990). The local average is constructed by weighting the
points according to their distance from x , using some kernel function. The
estimation is just the weighted sum of the observed responses (or target
outputs) given by

ŷ =
M∑

m=1

wmym , (9)

where the weights wm are given by

wm = �
(‖x−xm‖

h

)
∑M

m ′=1 �
(‖x−xm′ ‖

h

) , (10)

where ym is the target output for training data point xm , and � is the
kernel function. We used the typical Gaussian kernel �(u) = e−u2/2/

√
2�.

The parameter h, called the bandwidth, is an important parameter as it
determines the smoothness of the fit, since increasing it or decreasing it
will control the size of the smoothing region.

2.5. K Nearest Neighbor Regression (KNN)

The K nearest neighbor regression method (KNN) is a nonparametric
method that bases its prediction on the target outputs of the K nearest

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 601

neighbors of the given query point (see Hastie et al., 2001). Specifically,
given a data point, we compute the Euclidean distance between that point
and all points in the training set. We then pick the closest K training data
points and set the prediction as the average of the target output values for
these K points. Quantitatively speaking, let �(x) be the set of K nearest
neighbors of point x . Then the prediction is given by

ŷ = 1
K

∑
m∈�(x)

ym , (11)

where again ym is target output for training data point xm .
Naturally K is a key parameter in this method, and has to be selected

with care. A large K will lead to a smoother fit, and therefore a lower
variance, of course at the expense of a higher bias, and vice versa for a
small K .

2.6. Classification and Regression Trees (CART)

CART is a classification or regression model that is based on a
hierarchical tree-like partition of the input space (Breiman, 1993).
Specifically, the input space is divided into local regions identified in a
sequence of recursive splits. The tree consists of internal decision nodes
and terminal leaves. Given a test data point, a sequence of tests along the
decision nodes starting from the root node will determine the path along
the tree till reaching a leaf node. At the leaf node, a prediction is made
according to the local model associated with that node.

To construct a tree using the training set, we start at the root node. We
select the variable (and its split threshold) whose splitting will lead to the
largest reduction in mean square error. We continue these splits recursively,
until the mean square error reaches an acceptable threshold. A typical
practice is to perform some kind of pruning for the tree, once designed.
This will eliminate ineffective nodes and keep in check model complexity.
To implement CART, we used the Matlab function (treefit).

2.7. Support Vector Regression (SVR)

Support vector regression (Scholkopf and Smola, 2001; Smola and
Scholkopf, 2003) is a successful method based on using a high-dimensional
feature space (formed by transforming the original variables), and
penalizing the ensuing complexity using a penalty term added to the error
function. Consider first for illustration a linear model. Then, the prediction
is given by

f (x) = wTx + b (12)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

602 N. K. Ahmed et al.

where w is the weight vector, b is the bias and x is the input vector. Let
xm and ym denote, respectively, the mth training input vector and target
output, m = 1, � � � ,M . The error function is given by

J = 1
2
‖w‖2 + C

M∑
m=1

|ym − f (xm)|�� (13)

The first term in the error function is a term that penalizes model
complexity. The second term is the �-insensitive loss function, defined
as |ym − f (xm)|� = max�0, |ym − f (xm)| − ��. It does not penalize errors
below �, allowing it some wiggle room for the parameters to move to
reduce model complexity. It can be shown that the solution that minimizes
the error function is given by

f (x) =
M∑

m=1

(�∗
m − �m)xT

m x + b, (14)

where �m and �∗
m are Lagrange multipliers. The training vectors giving

nonzero Lagrange multipliers are called support vectors, and this is a key
concept in SVR theory. Non-support vectors do not contribute directly to
the solution, and the number of support vectors is some measure of model
complexity (see Chalimourda et al., 2004; Cherkassky and Ma, 2004). This
model is extended to the nonlinear case through the concept of kernel �,
giving a solution

f (x) =
M∑

m=1

(�∗
m − �m)�(xT

m x) + b� (15)

A common kernel is the Gaussian kernel. Assume its width is �K (the
standard deviation of the Gaussian function). In our simulations, we used
the toolbox by Canu at al. (2005).

2.8. Gaussian Processes (GP)

Gaussian process regression is a nonparametric method based on
modeling the observed responses of the different training data points
(function values) as a multivariate normal random variable (see a detailed
treatise in Rasmussen and Williams, 2006). For these function values an a
priori distribution is assumed that guarantees smoothness properties of the
function. Specifically, the correlation between two function values is high
if the corresponding input vectors are close (in Euclidean distance sense)
and decays as they go farther from each other. The posterior distribution

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 603

of a to-be-predicted function value can then be obtained using the assumed
prior distribution by applying simple probability manipulations.

Let V (X ,X) denote the covariance matrix between the function values,
where X is the matrix of input vectors of the training set (let the (i , j)th
element of V (X ,X) be V (xi , xj), where xi denotes the ith training input
vector). A typical covariance matrix is the following:

V (xi , xj) = �2
f e

− ‖xi−xj ‖2
2	2 � (16)

Thus, the vector of function values f (where fi is the function value for
training data point i) obeys the following multivariate Gaussian density:

f ∼ �f (0,V (X ,X)), (17)

where �f (
,�) denotes a multivariate normal density function in variable
f with mean
 and covariance matrix �.

In addition, some independent zero-mean normally distributed noise
having standard deviation �n is assumed to be added to the function values
to produce the observed responses (target values), i.e.,

y = f + �, (18)

where y is the vector of target outputs and � is the vector of additive noise,
whose components are assumed to be independent. The terms fi represent
the inherent function values, and these are the values we would like to
predict, particularly for the test data.

Then, for a given input vector x∗, the prediction f̂∗ is derived as

f̂∗ = E
(
f∗|X , y, x∗

) = V (x∗,X)
[
V (X ,X) + �2

nI
]−1

y� (19)

This equation is obtained by standard manipulations using Bayes rule
applied on the given normal densities.

3. PREPROCESSING METHODS

Preprocessing the time series can have a big impact on the subsequent
forecasting performance. It is as if we are “making it easier” for the
forecasting model by transforming the time series based on information
we have on some of its features. For example, a large number of empirical
studies advocate the deseasonalization of data possessing seasonalities
for neural networks (Balkin and Ord, 2000; Miller and Williams, 2004;
Zhang and Qi, 2005). Other preprocessing methods such as taking a log
transformation and detrending have also been studied in the literature.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

604 N. K. Ahmed et al.

We will use a deseasonalization step (if needed) and a log-step; however,
these are not the object of this comparison study. What would be more
novel is to compare some of the other preprocessing typically used for
machine learning forecasting models, as there are very few comparison
studies (if any) that consider these. The methods considered are (let zt
denote the time series):

1. No special preprocessing (LAGGED-VAL): the input variables to the
machine learning model are the lagged time series values (say
zt−N+1, � � � , zt), and the value to be predicted (target output) is the next
value (for one-step ahead forecasting);

2. Time series differencing (DIFF): We take the first backward difference
and apply the forecasting model on this differenced series;

3. Taking moving averages (MOV-AVG): We compute moving averages with
different-sized smoothing windows, for example,

ui(t) = 1
Ji

t∑
j=t−Ji+1

zj , i = 1, � � � , I , (20)

where Ji is the size of the averaging window (the Ji ’s in our case take the
values 1, 2, 4, 8). The new input variables for the forecasting model would
then be ui(t) and the target output is still zt+1. The possible advantage of
this preprocessing method is that moving averages smooth out the noise in
the series, allowing the forecasting model to focus on the global properties
of the time series. The existence of several moving averages with different
smoothing levels is important so as to preserve different levels of time series
detail in the set of inputs.

A note on the differencing issue (Point 2 above) is that while
differencing for linear models is a well-understood operation having
principled tests to determine its need, this is not the case for nonlinear
models. The situation there is more ad hoc, as our experience and studies
on other time series have demonstrated that differencing is not always a
good strategy for nonstationary time series, and the converse is true for
stationary time series. Here we attempt to shed some light on the utility of
differencing.

4. PARAMETER DETERMINATION

For every considered method there are typically a number of
parameters, some of them are key parameters and have to be determined
with care. The key parameters are the ones that control the complexity of
the model (or in short model selection parameters). These are the number
of input variables given to the machine learning model (for example the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 605

number of lagged variables N for LAGGED-VAL and DIFF), the size of the
network (for MLP and for BNN), the width of the radial bases � for RBF,
the number of neighbors K for KNN, the width of the kernels h for GRNN,
and for each of SVR and GP we have three parameters (we will discuss them
later).

For linear models, the typical approach for model selection is to use an
information criterion such as Akaike’s criterion, the Bayesian information
criterion, or others, which consider a criterion consisting of the estimation
error added to it a term penalizing model complexity. For machine
learning approaches such criteria are not well-developed yet. Even though
some theoretical analyses have obtained some formulas relating expected
prediction error with the estimation error (training error) and model
complexity (Magdon-Ismail et al., 1998; Moody, 1992; Murata et al., 1993),
these formulas are mostly bounds and have not been tested enough to
gain acceptance in practical applications. The dominant approach in the
machine learning literature has been to use the K-fold validation approach
for model selection. Empirical comparisons indicate its superiority for
performance accuracy estimation and for model selection (Kohavi, 1995)
over other procedures such as the hold out, the leave one out, and the
bootstrap methods. In the K-fold validation approach the training set is
divided into K equal parts (or folds). We train our model using the data
in the K − 1 folds and validate on the remaining K th fold. Then we rotate
the validation fold and repeat with the same procedure again. We perform
this training and validation K times, and compute the sum of the validation
errors obtained in the K experiments. This will be the validation error that
will be used as a criterion for selecting the key parameters (we used K = 10
in our implementation, as this is generally the best choice according to
Kohavi, 1995).

For each method there are generally two parameters (or more) that
have to be determined using the K-fold validation: the number of input
variables (i.e., the number of lagged variables N), and the parameter
determining the complexity (for example, the number of hidden nodes
for MLP, say NH). We consider a suitable range for each parameter, so
for N we consider the possible values [1, 2, � � � , 5], and for NH we consider
the candidate values NH = [0, 1, 3, 5, 7, 9] (0 means a linear model). First,
we fix NH as the median of the candidate NH values, and perform 10-
fold validation to select N . Then we fix this selected N and perform a
10-fold validation to select NH . Note that for MLP we have the possibility
of “having zero hidden nodes" (NH = 0), meaning simply a linear model.
Balkin and Ord (2000) have shown that the possibility of switching to
a linear model improved performance. We perform a similar tuning
procedure as above for all models (except GP as we will see later). The
following are the ranges of the parameters of the other models. For BNN,
the number of hidden nodes is selected from the candidate values NH =

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

606 N. K. Ahmed et al.

[1, 3, 5, 7, 9]. Note that BNN does not encompass a linear model like MLP,
because as developed in Foresee and Hagan (1997) and MacKay (1992b)
it applies only to a multilayer network. For a linear model it has to be
rederived, leading to some form of a shrinkage-type linear model. For
RBF the width of the radial bases � is selected from the possible values
[2�5, 5, 7�5, 10, 12�5, 15, 17�5, 20]. For GRNN the bandwidth parameter h is
selected from [0�05, 0�1, 0�2, 0�3, 0�5, 0�6, 0�7]. The number of neighbors K
in the KNN model is tested from the possibilities [2, 4, 6, 8, 12, 16, 20].

For the case of SVM the key parameters that control the complexity
of the model are �, C , and �K . In Cherkassky and Ma (2004) and in
Chalimourda et al. (2004) a comprehensive analysis of these parameters
and their effects on the out-of-sample prediction performance and model
complexity is presented. Chalimourda et al. (2004) and Mattera and Haykin
(1999) argue that C be set as the maximum of the target output values
ymax, and that the prediction performance should not be very sensitive to
the value of C . Using theoretical as well as experimental analysis Kwok
(2001) suggests that � should be set equal to the noise level in the
data. Chalimourda et al. (2004) argue that the prediction performance is
sensitive to �K , and that this parameter has to be carefully selected. We
followed the lead and fixed C as ymax. We allowed � and �K to be set using
10-fold validation. We consider a two-dimensional grid of � and �K using the
values �y ∗ [0�5, 0�75, 1, 1�25, 1�5] × �0 ∗ [0�05, 0�1, 0�25, 0�5, 1, 2, 4]. The term
�y is the estimated noise level in the time series, and it is estimated by
subtracting a centered moving average of the time series from the time
series itself, and obtaining the standard deviation of the resulting residual
time series. This is of course only a rough estimate of the noise standard
deviation, as an accurate level is not needed at this point. For the K-fold
validation we need only a ballpark estimate to determine the search range.
The term �2

0 gives a measure of the spread of the input variables, and is
measured as the sum of the variances of the individual input variables.

For Gaussian processes, there are three key parameters: �f , �n , and 	. It
will be prohibitive to use a three-dimensional 10-fold validation approach
on these parameters. We opted for the model selection algorithm proposed
by Rasmussen and Williams (2006). It is an algorithm that maximizes the
marginal likelihood function. The authors make a point that such criterion
function does not favor complex models, and overfitting will therefore be
unlikely (unless there is a very large number of hyperparameters).

Concerning the other less key parameters and model details, we
selected them as follows. For MLP and BNN, we have used the logistic
function activation functions for the hidden layer, and a linear output layer.
Training is performed for 500 epochs for MLP and for 1000 epochs for
BNN (some initial experimentation indicated BNN needs more training
iterations). Training also utilized a momentum term of value 0�2, and an
adaptive learning rate with initial value 0�01, an increase step of 1�05 and

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 607

a decrease step of 0�7. For RBF’s the maximum number of radial bases is
selected as 25% of the size of the training set (this number was obtained by
experimenting on the training set, keeping a few points for validation). For
GRNN, we used Gaussian kernels. For SVR, we used the more commonly
used Gaussian kernel.

5. EXPERIMENTAL SETUP

The benchmark data that we have used for the comparison are the M3
competition data (M3 Competition, 2008). The M3 is a dataset consisting
of 3003 monthly, quarterly, and annual time series. The competition was
organized by the International Journal of Forecasting (Makridakis and
Hibon, 2000), and has attracted a lot of attention. A lot of follow-up
studies have come out analyzing its results, up to the current year. We have
considered all monthly data in the M3 benchmark that have more than 80
data points. The range of lengths of the time series considered has turned
out to be between 81 and 126, and the number of considered time series
has turned out to be 1045. From each time series, we held out the last
18 points as an out of sample set. All performance comparisons are based
on these 18 × 1045 out-of-sample points. We considered only one-step-ahead
forecasting.

The time series considered have a variety of features. Some possess
seasonality, some exhibit a trend (exponential or linear), and some are
trendless, just fluctuating around some level. Some preprocessing needs
to be done to handle these features. Many articles consider the issues
of preprocessing (Balkin and Ord, 2000; Miller and Williams, 2004;
Zhang and Qi, 2005; Zhang et al., 2004), and so they are beyond the
scope of this work. Based on some experimentation on the training set
(withholding some points for validation), we settled on choosing the
following preprocessing. We perform the following transformations, in the
following order:

1. Log transformation;
2. Deseasonalization;
3. Scaling.

For the log transformation, we simply take the log of the time series.
Concerning deseasonalization, a seasonality test is performed first to
determine whether the time series contains a seasonal component or not.
The test is performed by taking the autocorrelation with lag 12 months,
to test the hypothesis “no seasonality” with using Bartlett’s formula for
the confidence interval (Box and Jenkins, 1976). If the test indicates the
presence of seasonality, then we use the classical additive decomposition

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

608 N. K. Ahmed et al.

approach (Makridakis et al., 1998). In this approach, a centered moving
average is applied, and then a month-by-month average is computed on
the smoothed series. This average will then be the seasonal average. We
subtract that from the original series to create the deseasonalized series.
The scaling step is essential to get the time series in a suitable range,
especially for MLP and BNN where scaling is necessary. We have used
linear scaling computed using the training set, to scale the time series to
be between −1, and 1.

After these transformations are performed we extract the input
variables (LAGGED-VAL, DIFF, or MOV-AVG) from the transformed time
series. Then the forecasting model is applied. Once we perform the
forecasting, we unwind all these transformations of course in reverse order.

We used as error measure the symmetric mean absolute percentage
error, defined as

SMAPE = 1
M

M∑
m=1

|ŷm − ym |
(|ŷm | + |ym |)/2, (21)

where ym is the target output and ŷm is the prediction. This is the main
measure used in the M3 competition. Since it is a relative error measure
it is possible to combine the errors for the different time series into one
number.

To even out the fluctuations due to the random initial weights (for
MLP and BNN) and the differences in the parameter estimation (for all
methods) due to the specific partition of the K-fold validation procedure,
we repeat running each model ten times. Each time we start with different
random initial weights and we shuffle the training data randomly so that
the K-fold partitions are different. Then we perform training and out of
sample prediction. Each of the ten runs will produce a specific SMAPE.
We then average these ten SMAPE’s to obtain the overall SMAPE for the
considered time series and the forecasting method. The overall SMAPE
(SMAPE-TOT) for all 1045 time series is then computed. This is the main
performance measure we have used to compare between the different
methods.

We also obtained the following rank-based performance measure.
Koning et al. (2005) proposed a significance test based on the rankings
of the different models, and applied it to the M3 competition models.
It is termed multiple comparisons with the best (MCB), and is based on
the work of McDonald and Thompson (1967). It essentially tests whether
some methods perform significantly worse than the best method. In this
method, we compute the rank of each method q on each time series p, say
Rq(p), with 1 being the best and 8 being the worst. Let Q ≡ 8 denote the
number of compared models, and let P be the number of time series (in
our case P = 1045). The average rank of each model q , or �Rq , is computed

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 609

by averaging Rq(p) over all time series. The �% confidence limits (we used
� = 95%) will then be

�Rq ± 0�5q�Q

√
Q (Q + 1)

12P
, (22)

where q�Q is the upper � percentile of the range of Q independent
standard normal variables. Further details of this test can be found in
Koning et al. (2005).

We also performed another statistical significance test, proposed by
Giacomini and White (2006). It is a recently developed predictive ability
test that applies to very general conditions. For example, it applies to
arbitrary performance measures, and can handle the finite sample effects
on the forecast performance estimates. It is also a conditional test, i.e.,
“can we predict if Model i will be better than Model j at a future date given
the information we have so far.” The basic idea is as follows. Consider two
forecasting models where we measure the difference in the “loss function”
(for example, the SMAPE) for the two models. Let that difference be
�Lt+1. That represents the SMAPE for Model 1 for the time series value
to be forecasted of time t + 1 minus that of Model 2. Considering �Lt+1

as a stochastic process, under the null hypothesis of equal conditional
predictive ability for the two models, we have

E
(
�Lt+1 |�t

) = 0 (23)

for any given �-field �t . This means that the out of sample loss difference
is a martingale difference sequence, and E(ht�Lt+1) = 0 for any �t

measurable function ht . The function ht is called a test function and it
should be chosen as any function of �Lt ′ , t ′ ≤ t that could possibly predict
�Lt+1 in some way. For our situation we used two test functions: ht = 1 and
ht = �Lt (we considered the SMAPE as the loss function).

Another rank-based measure is the “fraction-best” (or in short FRAC-
BEST). It is defined as the fraction of time series for which a specific model
beats all other models. We used the SMAPE as a basis for computing this
measure. The reason why this measure could be of interest is that a model
that has a high FRAC-BEST, even if it has average overall SMAPE, is deemed
worth testing for a new problem, as it has a shot at being the best.

6. RESULTS

Tables 1–3 show the overall performance of the compared forecasting
models on all the 1045 time series, for respectively, the LAGGED-VAL,
DIFF, and MOV-AVG preprocessing methods. Figures 1–3 show the average

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

610 N. K. Ahmed et al.

TABLE 1 The overall performance of the compared methods on all the 1045 time series for the
LAGGED-VAL preprocessing method

Model SMAPE-TOT Mean rank Rank interval FRAC-BEST

MLP 0.0857 2.78 (2.62, 2.94) 35�6
BNN 0.1027 3.42 (3.26, 3.58) 16�9
RBF 0.1245 5.33 (5.17, 5.49) 6�7
GRNN 0.1041 5.24 (5.08, 5.40) 6�3
KNN 0.1035 5.10 (4.94, 5.26) 7�3
CART 0.1205 6.77 (6.61, 6.93) 3�2
SVR 0.0996 4.19 (4.03, 4.35) 8�3
GP 0.0947 3.17 (3.01, 3.33) 15�7

ranks with confidence bands for the eight methods for respectively the
LAGGED-VAL, DIFF, and MOV-AVG preprocessing methods.

One can observe from the obtained results the following:

a) The ranking of the models is very similar for both the LAGGED-
VAL and the MOV-AVG preprocessing methods, being overall MLP, GP,
then BNN and SVR approximately similar, then KNN and GRNN almost
tied, CART, then RBF. Both preprocessing methods yield very similar
performance for all methods. The exception is for BNN, which ranks
fourth for LAGGED-VAL but second for MOV-AVG (in terms of the
SMAPE).

b) The DIFF preprocessing, on the other hand, gives much worse
performance than the other two preprocessing methods. The ranks are
also different from the ranks obtained for the other two preprocessing
methods. They are: CART and GRNN almost equal, GP, KNN, SVR,
BNN, MLP, then RBF. Since DIFF is an inferior preprocessing method,
we would give more weight to the rankings obtained for the other
preprocessing procedures, when judging the overall performance of the
machine learning models.

TABLE 2 The overall performance of the compared methods on all the 1045 time series for the
DIFF preprocessing method

Model SMAPE-TOT Mean rank Rank interval FRAC-BEST

MLP 0.1788 5.02 (4.86, 5.18) 6�5
BNN 0.1749 4.58 (4.42, 4.74) 14�7
RBF 0.2129 5.24 (5.08, 5.40) 8�8
GRNN 0.1577 3.92 (3.76, 4.08) 14�7
KNN 0.1685 4.57 (4.41, 4.73) 11�7
CART 0.1529 3.93 (3.77, 4.09) 26�1
SVR 0.1709 4.59 (4.43, 4.75) 6�7
GP 0.1654 4.15 (3.99, 4.31) 10�7

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 611

TABLE 3 The overall performance of the compared methods on all the 1045 time series for the
MOV-AVG preprocessing method

Model SMAPE-TOT Mean rank Rank interval FRAC-BEST

MLP 0.0834 2.88 (2.72, 3.04) 35�4
BNN 0.0858 2.94 (2.78, 3.10) 15�9
RBF 0.1579 6.28 (6.12, 6.44) 4�9
GRNN 0.1033 4.99 (4.83, 5.15) 4�7
KNN 0.1034 4.95 (4.79, 5.11) 8�4
CART 0.1172 6.31 (6.15, 6.47) 3�8
SVR 0.1040 4.41 (4.25, 4.57) 6�7
GP 0.0962 3.26 (3.09, 3.42) 20�0

Table 4 shows the results of the Giacomini–White predictive ability
test at the 95% confidence level for the LAGGED-VAL preprocessing
method. We would like to stress the fact that this is a conditional test. This
means it asks the question whether averages of and lagged values of the
difference in SMAPE between two models can predict future differences.

FIGURE 1 The average ranks with 95% confidence limits for the multiple comparison with the
best test for the LAGGED-VAL preprocessing method. The dashed line indicates that any method
with confidence interval above this line is significantly worse than the best (as described in Section 5
immediately before Eq. (22)).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

612 N. K. Ahmed et al.

FIGURE 2 The average ranks with 95% confidence limits for the multiple comparison with the
best test for the DIFF preprocessing method. The dashed line indicates that any method with
confidence interval above this line is significantly worse than the best (as described in Section 5
immediately before Eq. (22)).

To shed light into this issue, we have computed the correlation coefficient
between �Lt and �Lt+1 where �Lt is the difference in SMAPEs at time
t of Models i and j . Table 5 shows these correlation coefficients for the
LAGGED-VAL preprocessing method. One can see the very interesting
phenomenon that the correlation coefficients are very high. This means
that the outperformance of one model over another is positively serially
correlated and therefore a persistent phenomenon. It would be interesting
to explore the efficiency of a model based on regressing past lags of the
SMAPE differences in predicting future SMAPE difference. This could be
the basis of a dynamical model selection framework, that switches from one
model to another based on the forecast of the delta loss function.

To seek more insight into the comparison results we have tested the
relative performance of the different categories of time series. The M3
time series can be categorized into the categories: macro, micro, industry,
finance, and demographic. Each category exhibits certain features that
might favor one model over the other. Table 6 shows the SMAPE-TOT
results for the LAGGED-VAL preprocessing procedure. The table clearly

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 613

FIGURE 3 The average ranks with 95% confidence limits for the multiple comparison with the
best test for the MOV-AVG preprocessing method. The dashed line indicates that any method with
confidence interval above this line is significantly worse than the best (as described in Section 5
immediately before Eq. (22)).

TABLE 4 The results of the Giacomini–White test (Giacomini and White, 2006) for conditional
predictive ability, at the 95% confidence level for the LAGGED-VAL preprocessing method. The
plus sign means that it is possible to predict a statistically significant difference between the
SMAPEs of the model in the corresponding column and the model in the corresponding row,
conditional on past available information

Models MLP GP SVR BNN KNN GRNN CART RBF

MLP
GP +
SVR + +
BNN + + +
KNN + + + +
GRNN + + + + +
CART + + + + + +
RBF + + + + + + +

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

614 N. K. Ahmed et al.

TABLE 5 The correlation coefficient between the difference in SMAPEs at time t and that at
time t + 1 for any two models. For example the entry in row 2 and column 3 represents
corr

(
SMAPEt (MLP) − SMAPEt (GP), SMAPEt+1(MLP) − SMAPEt+1(GP)

)
Models MLP GP SVR BNN KNN GRNN CART RBF

MLP 1 0�47 0�53 0�48 0�45 0�46 0�49 0�63
GP 0�47 1 0�38 0�52 0�4 0�38 0�42 0�57
SVR 0�53 0�38 1 0�54 0�43 0�43 0�42 0�57
BNN 0�48 0�52 0�54 1 0�52 0�52 0�52 0�59
KNN 0�45 0�4 0�43 0�52 1 0�24 0�34 0�56
GRNN 0�46 0�38 0�43 0�52 0�24 1 0�38 0�56
CART 0�49 0�42 0�42 0�52 0�34 0�38 1 0�53
RBF 0�63 0�57 0�57 0�59 0�56 0�56 0�53 1

shows that the ranks are almost the same as the general ranks obtained over
all the time series combined (with the BNN model somewhat an exception
as it shows a larger deviation from the general rank). We have applied a
similar experiment for the other two preprocessing methods. For lack of
space the corresponding tables are not shown, but we have observed the
exact same conclusion as the case of the LAGGED-VAL preprocessing. This
indicates that the relative outperformance of certain models is a general
phenomenon, not the outcome of some categories favoring some methods.

We have also tested how the models would fare according to some
other categories as to the nature of the time series. For example we
have categorized the time series as to whether they possess a trend or
are nontrending. The existence of a trend stretches the range of the
time series values and it might therefore be harder to train a model.
Another categorization is seasonality versus nonseasonality. Even though
we deseasonalize the time series, any deseasonalization step is usually far
from ideal, and some residual seasonality remains. It would be interesting to
examine which models can handle such imperfections better than others.
Another caregorization is the following. The MLP model encompasses the

TABLE 6 The overall symmetric MAPE (SMAPE-TOT) by data category on all the 1045 time
series for the LAGGED-VAL preprocessing method

Model Micro Macro Industry Finance Demographic

MLP 0.182 0.35 0.091 0.086 0.024
BNN 0.229 0.040 0.103 0.101 0.032
RBF 0.232 0.072 0.123 0.144 0.045
GRNN 0.199 0.053 0.102 0.122 0.046
KNN 0.195 0.053 0.104 0.121 0.044
CART 0.231 0.062 0.118 0.144 0.049
SVR 0.187 0.051 0.098 0.123 0.041
GP 0.189 0.044 0.096 0.109 0.030

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 615

case of a zero hidden node network, which essentially means a linear
model. It might, therefore, be surmised that the superiority of MLP
is inherited from its ability to reduce to a linear model. To test this
hypothesis, we have categorized the time series into a group where a zero
hidden node network is selected (the “Zero-Hid” group) and a group
where more hidden nodes are selected (the “Nonzero-Hid” group), as
determined by the parameter estimation step. Table 7 shows the SMAPE-
TOT results for all the aforementioned categorizations for the LAGGED-
VAL preprocessing procedures.

One can see that the category-restricted ranking of the models is
quite similar to the overall ranking (with the exception of BNN in the
seasonal/nonseasonal caregorization). This again indicates that the relative
performance is broad-based. No specific feature of the time series favors a
particular model. One can observe how the existence of a trend negatively
affects the performance for all models, and in addition how it accentuates
the performance differences among the models. One can see that the rank
of MLP for the Nonzero-Hid group is still number one, suggesting that
the superiority of MLP is genuine and not merely due to its ability to
switch to a linear model. However, the relative differences in performance
between the models in the Nonzero-Hid group get smaller, indicating that
the other models could possibly benefit if such a switching mechanism is
incorporated into them.

To illustrate the presented ideas in a concrete manner, Fig. 4 shows an
example of a time series together with the forecasts of the two models that
achieved the top two spots for this time series, namely MLP and GP. Table 8
shows the SMAPE of all the different models for this particular time series.

As it turns out, the computational demands of the different models
vary significantly. Table 9 shows the computation time per time series for
each model. All measurements are based on running the methods on
an Intel Centrino Duo 1.83GHZ machine, and using Matlab’s tic and
toc functions. One can see that the most computationally demanding

TABLE 7 The overall symmetric MAPE (SMAPE-TOT) by other categories on all the 1045 time
series for the LAGGED-VAL preprocessing method

Model Trend No-trend Seasonal Nonseasonal Zero-Hid Nonzero-Hid

MLP 0.1366 0.0597 0.1081 0.0811 0.0848 0.0869
BNN 0.1634 0.0716 0.1978 0.0831 0.1078 0.0937
RBF 0.2109 0.0803 0.1511 0.1191 0.1304 0.114
GRNN 0.1729 0.0689 0.1169 0.1015 0.1087 0.0958
KNN 0.1724 0.0683 0.1154 0.1011 0.1084 0.0944
CART 0.2043 0.0776 0.1354 0.1175 0.126 0.1104
SVR 0.1655 0.0658 0.1113 0.0971 0.1029 0.0935
GP 0.1565 0.0631 0.1126 0.0911 0.0981 0.0888

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

616 N. K. Ahmed et al.

FIGURE 4 The forecasts of the top two models (MLP and GP) for one of the M3 time series.
Shown is the training period, followed by the out of sample period (the last 18 points). The
forecasts are shown only for the out of sample period.

model is BNN. Following that comes MLP (as if this is the price one has
to pay for its superior peformance). Following this comes RBF, GP, SVR,
CART, then GRNN and KNN, both of which need very little computation
time. At the level of time series lengths we are dealing with here, it seems

TABLE 8 SMAPE for the eight
models for the time series example
considered in Fig. 4

Model SMAPE

MLP 0.0384
BNN 0.0411
RBF 0.0442
GRNN 0.0513
KNN 0.0511
CART 0.0566
SVR 0.0468
GP 0.0397

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 617

TABLE 9 The computation time for
every method per time series

Model Time (min/series)

MLP 1.6076
BNN 2.8251
RBF 0.6917
GRNN 0.0885
KNN 0.0068
CART 0.0803
SVR 0.3099
GP 0.6268

that the computational issue is not significant enough to be a deciding
factor for the modeler dealing with only one or few time series. However,
it could be an important consideration if one decides to experiment with
many models or do a very demanding parameter tuning step.

7. COMMENTS ON THE RESULTS

From the presented results, it is clear that the different machine
learning models differ significantly, and there is an unambiguous ranking.
This ranking seems to be broad-based in the sense that it is not dictated by
the time series having certain features that favor some models. However,
we must mention that this ranking applies to business-type time series.
Some other time series, for example related to physics, chemistry, or other
phenomena tend to exhibit very different features concerning the size of
the series, the level of the noise, etc. It would be interesting to see how the
tested models would compare on these. Also it would be interesting to find
out if the obtained conclusions apply for quarterly or yearly business-type
time series. We must also mention that the ranking obtained is a general
ranking and still in any business forecasting problem several models have
to be tested. Different business type time series have different stylized facts
and hence the performance ranks can be different. However, the general
ranking can still be a very valuable guide for the modeler in choosing which
models to test.

The other observation is that preprocessing can have a large effect
on model performance. Differencing the time series resulted in a
different ranking, and generally much worse performance. As mentioned,
we put more weight on the ranking of the LAGGED-VAL and MOV-
AVG preprocessing results, because these preprocessing methods are the
ones that the user will most probably use, due to their effectiveness. The
reason why DIFF leads to worse results than the other two preprocessing
methods could possibly be the following. It is likely due to the fact that

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

618 N. K. Ahmed et al.

for many of the considered time series the absolute level is a useful piece
of information. For example there could possibly be some mean reverting
behavior that dictates a more likely reversal direction when high or low
levels are reached. When choosing between LAGGED-VAL and MOV-AVG,
one has to consider the features of the considered time series. For example
if there is a long term average that is known to have some significance, then
moving average preprocessing could be a more advantageous method. If
one would have used lagged preprocessing, then the number of lags could
be excessive.

The MLP and the GP models are the best two models, with MLP being
the best for the LAGGED-VAL and MOV-AVG preprocessing methods
and GP being more robust because it did also very well for the DIFF
preprocessing. This is a very interesting result, because GP only very
recently caught the attention of the machine learning community. It has
been developed long time ago, but was never really widely studied or
widely applied until very recently. The MLP model yielded very good results
partly (but not wholly) because of its ability to reduce to a linear model.
This is consistent with one of the conclusions of the M3 competition,
which states that simple models tend to outperform more complex models.
While support vector machines (SVM) is one of the top models in
classification, in regression it does not seem to keep up the top spot.
The BNN is generally similar in performance to SVR. Surprisingly it is in
the second spot in terms of the fraction-best measure, and for MOV-AVG
preprocessing it does very well. Apparently its performance is a bit erratic.
For some time series it is in the top position while for others it has a
high SMAPE. After this comes GRNN and KNN. Their performance is in
general average, but they tend to be quite robust, rarely giving bad surprises.
GRNN outperforms KNN a little, in general. It is interesting that the three
methods KNN, GRNN and GP are all based on constructing a locally-
based weighted average of the target outputs of the training set. Yet, GP
outperforms the other two by so much. Perhaps, this is because GP is based
on a solid probabilistic model. CART gave erratic performance, almost
worst performance for the LAGGED-VAL and MOV-AVG preprocessing
methods and almost best performance for the DIFF preprocessing method.
Perhaps this is because it does not have enough flexibility as some of the
other models with respect to linearly transforming the input space. The
worst model overall is RBF. It consistently gave bad errors. Perhaps the fact
that the centers and the kernel widths are not tunable lead it to be too
inflexible.

8. CONCLUSION

We have presented in this work a large scale comparison of eight
machine learning models on the M3 monthly time series of lengths ranging

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 619

from 63 to 108 points (for the training period). The machine learning
models are considered in their basic forms without the modifications and
the additions proposed by so many researchers. The study shows that there
are significant differences between the models, and also that preprocessing
can have a significant impact on performance. The two best models turned
out to be MLP and GP. This is an interesting result, as GP up until few
years ago has not been a widely used or studied method. We believe that
there is still room for improving GP in a way that may positively reflect on
its performance.

A study that would also be of interest is to extend such a comparison
to more recently developed machine learning models; for example Costillo
and Hadi’s (2006) functional networks and White’s (2006) Quicknet. We
believe comparison studies can guide not only the practitioner in selecting
appropriate models, but also the research community in focusing the
research effort to more feasible or more promising directions.

ACKNOWLEDGMENTS

We would like to acknowledge the help of Athanasius Zakhary of Cairo
University, who has developed the seasonality test for this work. We also
would like to acknowledge the useful discussions with Professor Ali Hadi of
the American University of Cairo and Cornell University and with Professor
Halbert White of UCSD. This work is part of the Data Mining for Improving
Tourism Revenue in Egypt research project within the Egyptian Data Mining
and Computer Modeling Center of Excellence.

REFERENCES

Alon, I., Qi, M., Sadowski, R. J. (2001). Forecasting aggregate retail sales: a comparison of artificial
neural networks and traditional methods. Journal of Retailing and Consumer Services 8:147–156.

Alpaydin, E. (2004). Introduction to Machine Learning. Cambridge, MA: MIT Press.
Anders, U., Korn, O. (1999). Model selection in neural networks. Neural Networks 12:309–323.
Balkin, S. D., Ord, J. K. (2000). Automatic neural network modeling for univariate time series.

International Journal of Forecasting 16(4):509–515.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press.
Box, G., Jenkins, G. (1976). Time Series Analysis, Forecasting and Control. San Francisco: Holden-Day Inc.
Breiman, L. (1993). Classification and Regression Trees. Boca Raton, FL: Chapman & Hall.
Callen, L. J., Kwan, C. C. Y., Yip, P. C. Y., Yuan, Y. (1996). Neural network forecasting of quarterly

accounting earnings. International Journal of Forecasting 12:475–482.
Canu, S., Grandvalet, Y., Guigue, V., Rakotomamonjy, A. (2005). SVM and Kernel Methods Matlab

Toolbox. Perception Systèmes et Information, INSA de Rouen, Rouen, France.
Caruana, R., Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms.

Proceedings of the 23rd International Conference on Machine Learning (ICML 2006), June 2006,
pp. 161–168.

Castillo, E., Hadi, A. S. (2006). Functional networks. In: Kotz, S., Balakrishnan, N., Read, C. B.,
Vidakovic, B., eds. Encyclopedia of Statistical Sciences. Vol. 4. pp. 2573–2583.

Chalimourda, A. Scholkopf, B., Smola, A. J. (2004). Experimentally optimal
 in support vector
regression for different noise models and parameter settings. Neural Networks 17(1):127–141.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

620 N. K. Ahmed et al.

Cherkassky, V., Ma. Y. (2004). Practical selection of SVM parameters and noise estimation for SVM
regression. Neural Networks 17(1):113–126.

Cybenko, G. (1989). Approximation by superposition of sigmoidal functions. Mathematics of Control,
Signals and Systems 2:303–314.

Foresee, F. D., Hagan, M. T. (1997). Gauss–Newton approximation to Bayesian learning.
In Proceedings IEEE Int. Conference Neural Networks, pp. 1930–1935.

Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks.
Neural Networks 2:183–192.

Gencay, R., Qi, M. (2001). Pricing and hedging derivative securities with neural networks: Bayesian
regularization, early stopping and bagging. IEEE Transactions on Neural Networks 12:726–734.

Ghysels, E., Granger, C. W. J., Siklos, P. L. (1996). Is seasonal adjustment a linear or nonlinear
data filtering process? Journal of Business and Economics Statistics 14:374–386.

Giacomini, R., White, H. (2006). Tests of conditional predictive ability. Econometrica 74:1545–1578.
Hardle, W. (1990). Applied Nonparametric Regression, Econometric Society Monographs, 19. Cambridge,

UK: Cambridge University Press.
Hastie, T. Tibshirani, R., Friedman, J. (2001). The Elements of Statistical Learning. Springer Series in

Statistics. Springer-Verlag.
Hill, T. O’Connor, M., Remus, W. (1996). Neural network models for time series forecasts.

Management Science 42:1082–1092.
Hornik, K. Stinchombe, M., White, H. (1989). Multi-layer Feedforward networks are universal

approximators. Neural Networks 2:359–366.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection. Proceedings International Joint Conference on Artificial Intelligence, IJCAI.
Koning, A. J., Franses, P. H., Hibon, M., Stekler, H. O. (2005). The M3 competition: statistical tests

of the results. International Journal of Forecasting 21:397–409.
Kwok, J. T. (2001). Linear dependency between and the input noise in support vector regression.

Proceedings of ICANN 2001, LNCS 2130:405–410.
Leshno, M., Lin, V., Pinkus, A., Schocken, S. (1993). Multilayer feedforward networks with a

nonpolynomial activation function can approximate any function. Neural Networks 6:861–867.
M3 Competition. (2008). http://www.forecasters.org/data/m3comp/m3comp.htm.
MacKay, D. J. C. (1992a). Bayesian interpolation. Neural Computation 4:415–447.
MacKay, D. J. C. (1992b). A practical Bayesian framework for backpropagation networks. Neural

Computation 4:448–472.
Magdon-Ismail, M., Nicholson, A., Abu-Mostafa, Y. (1998). Financial markets, very noisy information

processing. Proceedings of the IEEE 86(11):2184–2195.
Makridakis, S., Wheelwright, S. C., Hyndman, R. J. (1998). Forecasting: Methods & Applications, 3rd ed.

Ch. 3, New York: Wiley.
Makridakis, S., Hibon, M. (2000). The M3-Competition: results, conclusions and implications.

International Journal of Forecasting 16:451–476.
Mattera, D., Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic

system. In: Scholkopf, B. Burges, C., Smola, A., eds. Advances in Kernel Methods: Support Vector
Learning. Cambridge, MA: MIT Press, pp. 211–241.

McDonald, B. J., Thompson, W. A. (1967). Rank sum multiple comparisons in one and two way
classifications. Biometrika 54:487–497.

Medeiros, M. C., Veiga, A. (2000). A hybrid linear-neural model for time series forecasting. IEEE
Transactions on Neural Networks 11:1402–1412.

Medeiros, M. C., Terasvirta, T., Rech, G. (2006). Building neural network models for time series: a
statistical approach. Journal of Forecasting 25:49–75.

Miller, D. M., Williams, D. (2004). Damping seasonal factors: shrinkage estimators for the
X-12-ARIMA program. International Journal of Forecasting 20:529–549.

Moody, J. E., Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural
Computation 1:281–294.

Moody, J. (1992). The effective number of parameters: An analysis of generalization and
regularization in nonlinear learning systems. Advances in Neural Information Processing Systems
4:847–854.

Murata, N., Yoshizawa, S., Amari, S. (1993). Learning curves, model selection, and complexity of
neural networks. Advances in Neural Information Processing Systems 5:607–614.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

An Empirical Comparison 621

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Its Applications 10:186–190.
Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: In: Mason, J. C., Cox,

M. G., eds. A Review in Algorithms for Approximation. Oxford: Clarendon, pp. 143–168.
Rasmussen, C. E., Williams, C. K. L. (2006). Gaussian Processes for Machine Learning. Cambridge, MA:

MIT Press.
Scholkopf, B., Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. Cambridge, MA: MIT Press.
Sharda, R., Patil, R. B. (1992). Connectionist approach to time series prediction: An empirical test.

Journal of Intelligent Manufacturing 3:317–323.
Smola, A. J., Scholkopf, B. (2003). A Tutorial on Support Vector Regression. NeuroCOLT Technical

Report, TR-98-030.
Swanson, N. R., White, H. (1995). A model-selection approach to assessing the information in

the term structure using linear models and artificial neural networks. Journal of Business and
Economic Statistics 13:265–275.

Terasvirta, T., van Dijk, D., Medeiros, M. C. (2005). Linear models, smooth transition
autoregressions, and neural networks for forecasting macroeconomic time series: A
reexamination. International Journal of Forecasting 21:755–774.

van Dijk, D., Terasvirta, T., Franses, P. H. (2002). Smooth transition autoregressive models – a
survey of recent developments. Econometric Reviews 21:1–47.

Watson, G. S. (1964). Smooth regression analysis. Sankhy Series A 26:359–372.
White, H. (2006). Approximate nonlinear forecasting methods. In: Elliott, G., Granger, C. W. J.,

Timmermann, A., eds. Handbook of Economics Forecasting. New York: Elsevier, pp. 460–512.
Zhang, W., Cao, Q., Schniederjans, M. J. (2004). Neural network earning per share forecasting

models: A comparative analysis of alternative methods. Decision Sciences 35(2):205–237.
Zhang, G. P., Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European

Journal of Operational Research 160:501–514.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
A
t
i
y
a
,

A
m
i
r
]

A
t
:

1
1
:
2
7

1
5

S
e
p
t
e
m
b
e
r

2
0
1
0

