
Graph Sample and Hold:
A Framework for Big-Graph Analytics

Nesreen K. Ahmed1, Nick Duffield2∗, Jennifer Neville3, Ramana Kompella4

Purdue University1,3,4, Rutgers University2

{nkahmed,neville,kompella}@cs.purdue.edu1,3,4,nick.duffield@rutgers.edu2

ABSTRACT
Sampling is a standard approach in big-graph analytics; the goal is
to efficiently estimate the graph properties by consulting a sample
of the whole population. A perfect sample is assumed to mirror ev-
ery property of the whole population. Unfortunately, such a perfect
sample is hard to collect in complex populations such as graphs
(e.g. web graphs, social networks), where an underlying network
connects the units of the population. Therefore, a good sample will
be representative in the sense that graph properties of interest can
be estimated with a known degree of accuracy.

While previous work focused particularly on sampling schemes
to estimate certain graph properties (e.g. triangle count), much
less is known for the case when we need to estimate various graph
properties with the same sampling scheme. In this paper, we pro-
pose a generic stream sampling framework for big-graph analytics,
called Graph Sample and Hold (gSH), which samples from mas-
sive graphs sequentially in a single pass, one edge at a time, while
maintaining a small state in memory. We use a Horvitz-Thompson
construction in conjunction with a scheme that samples arriving
edges without adjacencies to previously sampled edges with prob-
ability p and holds edges with adjacencies with probability q. Our
sample and hold framework facilitates the accurate estimation of
subgraph patterns by enabling the dependence of the sampling pro-
cess to vary based on previous history. Within our framework, we
show how to produce statistically unbiased estimators for various
graph properties from the sample. Given that the graph analytics
will run on a sample instead of the whole population, the runtime
complexity is kept under control. Moreover, given that the estima-
tors are unbiased, the approximation error is also kept under con-
trol. Finally, we test the performance of the proposed framework
(gSH) on various types of graphs, showing that from a sample with
≤ 40K edges, it produces estimates with relative errors < 1%.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph Algorithms; H.2.8 [Database Ap-
plications]: Data Mining
∗Address from September 1, 2014: Department of Electrical and Computer Engineer-
ing, Texas A&M University, College Station, TX 77843-3128

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623757.

Keywords
Network Sampling, Graph Streams, Statistical Estimation

1. INTRODUCTION
A large percentage of the world’s population routinely use on-

line applications (e.g., Facebook and instant messaging) that allow
them to interact with their friends, family, colleagues and anybody
else that they wish to. Analyzing the various properties of these
interconnection networks is a key aspect in managing these appli-
cations; for example, uncovering interesting dynamics often prove
crucial for either enabling new services or making existing ones
better. Since these interconnection networks are often modeled as
graphs, and these networks are huge in practice (e.g., Facebook
has more than a billion nodes), efficient big-graph analytics has
recently become extremely important.

One key stumbling block for enabling big graph analytics is the
limitation in computational resources. Despite advances in dis-
tributed and parallel processing frameworks such as MapReduce
for graph analytics and the appearance of infinite resources in the
cloud, running brute-force graph analytics is either too costly, too
slow, or too inefficient in many practical situations [33, 28]. Fur-
ther, finding an ‘approximate’ answer is usually sufficient for many
types of analyses; where the extra cost and time in finding the ex-
act answer is often not worth the extra accuracy. Sampling there-
fore provides an attractive approach to quickly and efficiently find
an approximate answer to a query, or more generally, any analysis
objective [4, 3].

Many interesting graphs in the online world naturally evolve over
time, as new nodes join or new edges are added to the network. A
natural representation of such graphs is in the form of a stream of
edges, as some prior work noted [4]. Clearly, in such a streaming
graph model, sampling algorithms that process the data in one-pass
are more efficient than those that process the data in an arbitrary
order. Even for static graphs, the streaming model is still applica-
ble, with a one-pass algorithm for processing arbitrary queries over
this graph typically more efficient than those that involve arbitrary
traversals through the graph.

1.1 Sampling, Estimation, Accuracy
In this paper, we propose a new sampling framework for big-

graph analytics, called Graph Sample and Hold (gSH). gSH es-
sentially maintains a small amount of state and passes through all
edges in the graph in a streaming fashion. The sampling probability
of an arriving edge can in general be a function of the stored state,
such as the adjacency properties of the arriving edge with those al-
ready sampled. For example, if an arriving edge has no adjacencies
to previously sampled edges we sample it with probability p, but if
the edge has adjacencies we hold it with probability q. (This can



be seen as an analog of the manner in which standard Sample and
Hold [15] samples packets with a probability depending on whether
their key matches one already sampled). Since any graph analysis
algorithm involves processing only a sample of edges (and thus,
nodes), gSH helps to keep runtime complexity under check.

gSH provides a generic framework for unbiased estimation of
the counts of arbitrary subgraphs. By varying the dependence of
sampling probabilities on previous history, one can tune the esti-
mation of various properties of the original graph efficiently with
arbitrary degrees of accuracy. For example, simple uniform sam-
pling of edges at random may naturally lead to selecting a large
number of higher-degree nodes since higher-degree nodes appear
in more number of edges. For each of these sampled nodes, we
can choose the holding function to simply track the size of the de-
gree for these specific nodes, of course accounting for the loss of
the count before the node has been sampled in an unbiased manner.
Similarly, by carefully designing the sampling function, we can ob-
tain a uniformly random sample of nodes (similar to the classic
node sampling [4]), for whom we can choose to hold an accurate
count of number of triangles each of these nodes is part of.

Our framework uses the Horvitz-Thompson construction [19] in
which the count of any sampled object is weighted by dividing by
its sampling probability. In gSH this is realized by maintaining
along with each sampled edge, the sampling probability that was
in force when it was sampled. The counts of subgraphs of sampled
edges are then weighted according to the product of the selection
probabilities of their constituent edges. Since the edge sampling
probabilities are determined conditionally with respect to the prior
sampling outcomes, this product reflects the dependence structure
of edge selection. The sampling framework also provide the means
to compute the accuracy of estimates, since an unbiased estimator
of the variance of the count estimator can be computed from the
sampling probabilities of selected edges alone. More generally, the
covariance between the count estimators of any pair of subgraphs
can be estimated in the same manner.

In this paper, we demonstrate applications of the gSH frame-
work in two directions. Firstly, we formulate a parameterized fam-
ily gSH(p,q) of gSH sampling schemes, in which an arriving edge
with no adjacencies with previously sampled edges is selected with
probability p; otherwise it is sampled with probability q. Secondly,
we consider four specific quantities of interest to estimate within
the framework. These are counts of links, triangles, connected
paths of length two, and the derived global clustering coefficient.
We also provide an unbiased estimator of node counts based on
edge sampling. Note that we do not claim that these lists of exam-
ples are by any means exhaustive or that the framework can accom-
modate arbitrary queries efficiently.

1.2 Relation to Sample and Hold
gSH for big-graph analytics bears some resemblance to the clas-

sic Sample and Hold (SH) approach [15], versions of which also ap-
peared as Counting Samples of Gibbons and Matias[18], and were
used for attack detection by Smitha, Kim and Reddy [31]. In SH,
packets carry a key that identifies the flow to which they belong.
A router maintains a cache of information concerning the flows of
packets that traverse it. If the key of an arriving packet matches a
key on which information is currently maintained in the router, the
information for that key (such as packet and byte counts and timing
information) is updated accordingly. Otherwise the packet is sam-
pled with some probability p. If selected, a new entry is instantiated
in the cache for that key. SH is more likely to sample longer flows.
Thus SH provides an efficient way to store information concerning

the disposition of packets across the small proportion of flows that
carry a large proportion of all network packets.

gSH can be viewed as an analog of SH in which the equiva-
lence relation of packets according to their keys is replaced by ad-
jacency relation between links. But this generalization brings many
differences as well. In particular, many graph properties involve
transitive properties (e.g., triangles) that are relatively uninterest-
ing in networking measurements (and hence, under explored). For
many of these properties, it is important to realize that the accuracy
of the analytics depends on the ordering of edges to some extent,
which was not the case for the vast majority of network measure-
ment problems considered in the literature.

1.3 Contributions and Outline
In Section 2, we describe our general graph sampling framework

and show how it can be used to provide statistically unbiased es-
timates of the counts of subgraph patterns. We also show how
unbiased estimates of the variance of these estimators can be ef-
ficiently computed within the same framework. In Section 3, we
show how counts of specific types of subgraph (links, triangles,
paths of length 2) and global clustering coefficient can be esti-
mated. In Section 4, we describe the specific gSH(p,q) graph Sam-
ple and Hold algorithms. In Section 5, we evaluate our method on
a number of real world networks. We estimate the counts described
in Section 3 and show that the resulting sampling distributions are
centered and balanced over the actual values of interest, with low
relative errors and tight error bounds as the sample size increases.
We also compare with prior work and show orders of magnitude
improvement in relative error with small(er) use of memory. We
discuss the general relation of our work to existing literature in Sec-
tion 6 and conclude in Section 7.

2. FRAMEWORK FOR GRAPH SAMPLING

2.1 Graph Stream Model
Let G = (V,K) be a graph. We call two edges k, k′ ∈ K are

adjacent, k ∼ k′, if they join at some node. Specifically:

• Directed adjacency: k = (k1, k2) ∼ k′ = (k′1, k
′
2) iff k2 =

k′1 or k1 = k′2. Note that ∼ is not symmetric in this case.

• Undirected adjacency: k = (k1, k2) ∼ k′ = (k′1, k
′
2) iff

k ∩ k′ 6= ∅. Note that ∼ is symmetric in this case.

Without loss of generality we assume edges are unique; otherwise
distinguishing labels that are ignored by ∼ can be appended.

The edges in K are arriving in an order k : [|K|] → K. For
k, k′ ∈ K, we write k ≺ k′ if k appears earlier than k′ in arrival
order. For i ≤ |K|, Ki = {k ∈ K : k � ki} comprises the first i
arrivals.

2.2 Edge Sampling Model
We describe the sampling of edges through a random process
{Hi} = {Hi : i ∈ [|K|]} where Hi = 1 if ki is selected, and
Hi = 0 otherwise. Let Fi denote the set of possible outcomes
{H1, . . . , Hi}; We assume that an edge is selected according to a
probability that is a function of the sampling outcomes of previous
edges. For example, the selection probability of an edge can be a
function of the (random) number of previously selected edges that
are adjacent to it. Thus we write

P[ki is selected |{H1, . . . , Hi−1}] = E[Hi|Fi−1] = pi (1)



where pi ∈ (0, 1] is the random probability that is determined by
the first i− 1 sampling outcomes1.

2.3 Subgraph Estimation
In this paper, we are principally concerned with estimating the

frequency of occurrence of certain subsets of K within the sample.
Our principal tool is the selection estimator Ŝi = Hi/pi of the
link ki, which indicates the presence of ki in K. It is uniquely
defined by the properties: (i) Ŝi ≥ 0; (ii) Ŝi > 0 iff Hi > 0; and
(iii) E[Ŝi|Fi−1] = 1, which we prove in Theorem 1 below. We
recognize Ŝi as a Horvitz-Thompson estimator [19] of unity.

The idea generalizes to indicators of general subsets of edges
with K. We call a subset J ⊂ K an ordered subset when written
in the increasing arrival order J = (ji1 , ji2 , . . . , jim) with i1 <
i2 < · · · < im. For an ordered subset J of K we write

H(J) =
∏
ji∈J

Hi and P (J) =
∏
ji∈J

pi (2)

with the convention that H(∅) = P (∅) = 1. We say that J is
selected ifH(J) = 1. The selection estimator for an ordered subset
J of K is

Ŝ(J) =
∏
ji∈J

Ŝji = H(J)/P (J) (3)

which is our main structural result concerning the properties of
Ŝ(J).

THEOREM 1. (i) E[Ŝi|Fi−1] = 1 and hence E[Ŝi] = 1.

(ii) For any ordered subset J = (ji1 , . . . , jim) of K,

E[Ŝ(ji1 , . . . , jim)|Fim−1 ] = Ŝ(ji1 , . . . , jim−1) (4)

and hence

E[Ŝ(J)] = 1 (5)

(iii) Let J, J ′ be two ordered subsets of K. If J ∩ J ′ = ∅ then

E[Ŝ(J)Ŝ(J ′)] = 1 and hence Cov(Ŝ(J), Ŝ(J ′)) = 0 (6)

(iv) Let J1, . . . , J` be disjoint ordered subsets of K. Let q be a
polynomial in ` variables that is linear in each of its argu-
ments. Then E[q(Ŝ(J1), . . . , Ŝ(J`))] = q(1, . . . , 1).

(v) Let J, J ′ be two ordered subsets of K with J∆J ′ be their
symmetric difference. Then Ĉ(J, J ′) defined below is non-
negative and an unbiased estimator of Cov(Ŝ(J), Ŝ(J ′)),
which is hence non-negative. Ĉ(J, J ′) is defined to be 0
when J ∩ J ′ = ∅, and otherwise:

Ĉ(J, J ′) = Ŝ(J ∪ J ′)
(
Ŝ(J ∩ J ′)− 1

)
(7)

(vi) Ŝ(J)
(
Ŝ(J)− 1

)
is an unbiased estimator of Var(Ŝ(J)).

PROOF. (i) E[Ŝi|Fi−1] = E[Hi/pi|Fi−1] = 1, since pi > 0.
(ii) is a corollary of (i) since

E[Ŝ(ji1 , . . . , jim)|Fim−1 ] (8)

= E
[
E[Ŝim |Fim−1]Ŝ(ji1 , . . . , jim−1)|Fim−1

]
= Ŝ(ji1 , . . . , jim−1) (9)

1Formally, {Fi} is the natural filtration associated with the process
{Hi}, and {pi} is previsible w.r.t. {Fi}; see [35].

(iii) When J ∩ J ′ = ∅, then by (ii)

E[Ŝ(J)Ŝ(J ′)] = E[Ŝ(J ∩ J ′)] = 1 (10)

(iv) Is a direct corollary of (iii)
(v) Unbiasedness: The case J ∩ J ′ = ∅ follows from (iii). Oth-

erwise,

E[Ĉ(J, J ′)] = E[Ŝ(J)Ŝ(J ′)]− E[Ŝ(J ∪ J ′)] (11)

= E[Ŝ(J)Ŝ(J ′)]− 1 = Cov(Ŝ(J), Ŝ(J ′))

since E[Ŝ(J)] = E[Ŝ(J ′)] = 1. Nonnegativity: Ĉ(J, J ′) =
(H(J ∪ J ′)/P (J ∪ J ′))(H(J ∩ J ′)/P (J ∩ J ′)− 1) = (H(J ∪
J ′)/P (J ∪ J ′))(1/P (J ∩ J ′) − 1) ≥ 0, since H(A)H(B) =
H(A) when B ⊂ A.

(vi) is a special case of (v) with J = J ′.

3. SUBGRAPH SUM ESTIMATION
We now describe in more detail the process of estimation, and

computing variance estimates. The most general quantity that we
wish to estimate is a weighted sum over collections of subgraphs;
for brevity, we will refer to these as subgraph sums. This class
includes quantities such as counts of total nodes or links in G, or
counts of more complex objects such as connected paths of length
two, or triangles that have been a focus of study in the recent lit-
erature. However, the class of more general quantities in which a
selector is applied to all subgraphs of a given type (e.g. triangles) or
only subgraphs fulfilling a selection criterion (e.g. based on labels
on the nodes of the triangle) are to be included in future work.

3.1 General Estimation and Variance
To allow for the greatest possible generality, we let K = 2K

denote the set of subsets of K, and let f be a real function on K.
For any subset Q ⊂ K, the subset sum of f over Q is

f(Q) =
∑
J∈Q

f(J) (12)

Here Q represents the set of subgraphs fulfilling a selection crite-
rion as described above. Let Q̂ denote the set of objects in Q that
are sampled, i.e., therefore J = (ki1 , . . . , kim) ∈ Q for which all
links are selected. The following is an obvious consequence of the
linearity of expectation and Theorem 1

THEOREM 2. (i) An unbiased estimator of f(Q) is

f̂(Q) =
∑
J∈Q

f(J)Ŝ(J) =
∑
J∈Q̂

f(J)/P (J) (13)

(ii) An unbiased estimator of Var(f̂(Q)) is∑
J,J′∈Q̂:J∩J′ 6=∅

f(J)f(J ′)(1/P (J ∪J ′))(1/P (J ∩J ′)−1)

(14)

Note that the sum in (14) can formally be left unrestricted since
terms with non-intersecting J, J ′ are zero due to our convention
that P (∅) = 1.

3.2 Edges
As before K denotes the edges in G; let K̂ denote the set of

sampled edges. Then

N̂K =
∑
ki∈K̂

1

pi
(15)



is an unbiased estimate of the unique edge count NK = |K|. An
unbiased estimate of the variance of N̂K is∑

ki∈K̂

1

pi

(
1

pi
− 1

)
(16)

3.3 Triangles
Let T denote the set of triangles τ = (k1, k2, k3) in G, and T̂

the set of sampled triangles. Then

N̂T =
∑
τ∈T̂

1/P (τ) (17)

is an unbiased estimate of NT = |T |, the number of triangles in G.
Since two intersecting triangles have either one link in common or
are identical, an unbiased estimate of Var(N̂T ) is∑
τ∈T̂

1

P (τ)

(
1

P (τ)
− 1

)
+
∑

τ 6=τ ′∈T̂

1

P (τ ∪ τ ′)

(
1

P (e(τ, τ ′))
− 1

)
where e(τ, τ ′) is the common edge between τ and τ ′

3.4 Connected Paths of Length 2
Let Λ denote the set of connected paths of length two L =

(k1, k2) in G, and Λ̂ the subset of these that are sampled. Then

N̂Λ =
∑
L∈Λ̂

1/P (L) (18)

is an unbiased estimate of NΛ = |Λ|, the number of such paths in
G. Since two non-identical members of Λ may have one edge in
common, an unbiased estimate of Var(N̂Λ) is∑
L∈Λ̂

1

P (L)

(
1

P (L)
− 1

)
+

∑
L 6=L′∈Λ̂

1

P (L ∪ L′)

(
1

P (e(L,L′))
− 1

)
where e(L,L′) = L ∩ L′ is the common edge between L and L′.

3.5 Clustering Coefficient
The global clustering coefficient of a graph is defined as α =

3NT /NΛ. While we use α̂ = 3N̂T /N̂Λ as an estimator of α, it is
not unbiased. However, the well known delta-method [29] suggests
using a formal Taylor expansion. But we note that a rigorous ap-
plication of this method depends on establishing asymptotic prop-
erties of N̂T and N̂Λ for large graphs, the study of which we defer
to a subsequent paper. With this caveat we proceed as follows. For
a random vector X = (X1, . . . , Xn) a second order Taylor expan-
sion results in the approximation

Var(f(X1, . . . , Xn)) ≈ v ·Mv (19)

where v = (∇f)(E[X]) and M is the covariance matrix of the
Xi. Considering f(N̂T , N̂Λ) = N̂T /N̂Λ we obtain the following
approximation. For computation we replace all quantities by their
corresponding unbiased estimators derived previously:

Var(N̂T /N̂Λ) ≈ Var(N̂T )

N̂2
Λ

+
N̂2
T Var(N̂Λ)

N̂4
Λ

(20)

−2
N̂T Cov(N̂T , N̂Λ)

N̂3
Λ

Following Theorem 1, the covariance term is estimated as∑
τ∈T̂ ,L∈Λ̂
τ∩L6=∅

1

P (τ ∪ L)

(
1

P (τ ∩ L)
− 1

)
(21)

3.6 Nodes
Node selection is not directly expressed as a subgraph sum, but

rather through a polynomial of the type treated in Theorem 1(iv).
Let K(x) denote the edges containing the node x ∈ V . Now ob-
serve x remains unsampled if and only if no edge in K(x) is sam-
pled. This motivates the following estimator of node selection:

n̂x = 1−
∏

ki∈K(x)

(1− Ŝi) (22)

The following is a direct consequence of Theorem 1(iv)

LEMMA 1. n̂x = 0 if and only if no edge from K(x) is sam-
pled, and E[nx] = 1.

4. GRAPH SAMPLE AND HOLD

4.1 Algorithms
We now turn to specific sampling algorithms that conform to the

edge sampling model of Section 2.2. Graph Sample and Hold
gSH(p, q) is a single pass algorithm over a stream of edges. The
edge k is somewhat analogous to the key of (standard) sample and
hold. A matching edge is sampled with probability q. If there is not
a match, the edge is stored with some probability p. An edge not
sampled is discarded permanently. For estimation purposes we also
need to keep track of the probability with which a selected edge is
sampled. We formally specify gSH(p, q) as Algorithm 1.

Algorithm 1: Graph Sample and Hold: gSH(p, q)

K̂ ← ∅;
while new edge k do

if k ∼ k′ for some (k′, p′) ∈ K̂ then
r = q

else
r = p

Append (k, r) to K̂ with probability r

In some sense, gSH samples connected components in the same
way the standard sample and hold samples flows, although there
are some differences. The main difference is a single connected
component in the original graph may be sampled as multiple com-
ponents. This can happen, for example, if omission of an edge from
the sample can disconnect a component. Clearly the order in which
nodes are streamed determines whether or not such sampling dis-
connection can occur.

Clearly, gSH would admit generalizations that allow a more com-
plex dependence of the sampling probability for a new edge on the
current sampled edge set. This can be achieved by adapting the
flexible holding function. Consequently, the details of the sam-
pling scheme (holding function) should allow certain subgraphs to
be favored for selection. In this paper, we do not delve into this
matter in great detail, rather we look at a simple illustrative modi-
fication of gSH that favor the selection of triangles– called gSHT .
gSHT is identical to gSH except that any arriving edge that would
complete a triangle is selected with probability 1; see Algorithm 2.
Obviously gSH(p, 1) and gSHT (p, 1) are identical.

4.2 Illustration with gSH(p,1)
We use a simple example of a path of length 3 to illustrate that in

Graph Sample and Hold gSH(p, 1), the distribution of the random
graph sample depends on the order in which the edges are pre-
sented. The graph G = (V,K) comprises 4 nodes V = a, b, c, d



Order Selection Prob. Weights Est. Node Degree
(a,b) (b,c) (c,d) (a,b) (b,c) (c,d) (a,b) (b,c) (c,d) a b c d

1 2 3 X X X p 1/p 1 1 1/p 1/p+ 1 2 1
· X X (1− p)p 0 1/p 1 0 1/p 1/p+ 1 1
· · X (1− p)2p 0 0 1/p 0 0 1/p 1/p
· · · (1− p)3 0 0 0 0 0 0 0

2 1 3 X X X p 1 1/p 1 1 1/p+ 1 1/p+ 1 1
X · X (1− p)p2 1/p 0 1/p 1/p 1/p 1/p 1/p
· · X (1− p)2p 0 0 1/p 0 0 1/p 1/p
X · · (1− p)2p 1/p 0 0 1/p 1/p 0 0
· · · (1− p)3 0 0 0 0 0 0 0

1 3 2 X X X p2 1/p 1 1/p 1/p 1/p+ 1 1/p+ 1 1/p
X X · p(1− p) 1/p 1 0 1/p 1/p+ 1 1 0
· X X (1− p)p 0 1 1/p 0 1 1/p+ 1 1
· X · (1− p)2p 0 1/p 0 0 1/p 1/p 0
· · · (1− p)3 0 0 0 0 0 0 0

Table 1: Estimation on a path of length 3 using gSH(p, 1)

Algorithm 2: Graph Sample and Hold for Triangles:
gSHT (p, q)

K̂ ← ∅;
while new edge k do

if k would complete a triangle in K̂ then
r = 1

else
if k ∼ k′ for some (k′, p′) ∈ K̂ then

r = q

else
r = p

Append (k, r) to K̂ with probability r

connected by 3 undirected edgesK = {(a, b), (b, c), (c, d)}which
are the keys for our setting. There are 6 possible arrival orders for
the keys, of which we need only analyze 3, since the other orders
can be obtained by time reversal. These are displayed in the "Or-
der" columns in Table 1. For each order, the possible selection out-
comes for the three edges by the check marks X, followed by the
probability of each selection. The adjusted weights for each out-
come is displayed in "Weights" followed by corresponding estimate
of the node degree, i.e., the sum of weights of edges incident at each
node. One can check by inspection that the probability-weighted
sums of the weight estimators are 1, while the corresponding sums
of the degree estimators yield the the true node degree.

5. EXPERIMENTS AND EVALUATION
We test the performance of our proposed framework (gSHT ) as

described in Algorithm 2 (with r = 1 for edges that are closing
triangles), on various social and information networks with 250K–
7M edges. For all network datasets, we consider an undirected
graph, discard edge weights, self-loops, and we generate the stream
by randomly permuting the edges. Table 2 summarizes the main
characteristics of these graphs, such that n is the number of nodes,
NK is the number of edges, NT is the number of triangles, NΛ

is the number of connected paths of length two, α is the global
clustering coefficient, and D is the graph density.

1. Social Facebook Graphs. Here, the nodes are people and
edges represent friendships among Facebook users in three

Table 2: Statistics of datasets. n is the number of nodes, NK is the
number of edges,NT is the number of triangles,NΛ is the number
of connected paths of length 2, α is the global clustering coefficient,
and D is the density.

graph n NK NT NΛ α D

socfb-CMU 7K 249.9K 2.3M 37.4M 0.18526 0.0114
socfb-UCLA 20K 747.6K 5.1M 107.1M 0.14314 0.0036

socfb-Wisconsin 24K 835.9K 4.8M 121.4M 0.12013 0.0029

web-Stanford 282K 1.9M 11.3M 3.9T 0.00862 5.01× 10−5

web-Google 876K 4.3M 13.3M 727.4M 0.05523 1.15× 10−5

web-BerkStan 685K 6.6M 64.6M 27.9T 0.00694 2.83× 10−5

different US schools (CMU, UCLA, and Wisconsin, see [32]
for data analysis and downloads).

2. Web Graphs2. Here, the nodes are web-pages and edges are
hyperlinks among these pages in different domains.

We ran the experiments on MacPro 2.66GHZ 6-Core Intel proces-
sor, with 48GB memory. In order to test the effect of parameter
settings (i.e., p and q), we perform 100 independent experiments
and we consider all possible combinations of p and q in the follow-
ing range,

p, q = {0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 0.1}

Our experimental procedure is done independently for each p =
pi, q = qi as follows:

1. Given one parameter setting p = pi, q = qi, we obtain a
sample of edges K̂ ⊂ K using gSHT (pi,qi)–as described in
Algorithm 2.

2. Using K̂, compute the unbiased estimates of the following
statistics: Edge counts N̂K ; Triangle counts N̂T ; Connected
paths of length two N̂Λ; Global Clustering Coefficient α̂.

3. Compute the unbiased estimates of the variance of the quan-
tities mentioned above.

Note that the estimation of the count of unique edges N̂K is nec-
essary when the graph stream is not simple (i.e., edges may occur
more than once).
2Stanford Network Project, http://snap.stanford.edu/



Table 3: Estimates of expected value and relative error, when
sample size ≤ 40K edges, with sampling probability p, q = 0.005
for web-BerkStan, and p = 0.005, q = 0.008 otherwise. First
column shows the statistics of the full graph, SSize is the num-
ber of sampled edges, and LB/UB are the 95% lower and upper
bounds respectively.

Edges NK

NK N̂K
|N̂K−NK |

NK
SSize LB UB

socfb-CMU 249.9K 249.6K 0.0013 1.7K 236.8K 262.4K
socfb-UCLA 747.6K 751.3K 0.0050 5K 729.3K 773.34K

socfb-Wisconsin 835.9K 835.7K 0.0003 5.5K 812.2K 859.1K
web-Stanford 1.9M 1.9M 0.0004 14.8K 1.9M 2M
web-Google 4.3M 4.3M 0.0007 25.2K 4.2M 4.3M

web-BerkStan 6.6M 6.6M 0.0006 39.8K 6.5M 6.7M

Triangles NT

NT N̂T
|N̂T−NT |

NT
SSize LB UB

socfb-CMU 2.3M 2.3M 0.0003 1.7K 1.6M 2.9M
socfb-UCLA 5.1M 5.1M 0.0095 5K 4.2M 6.03M

socfb-Wisconsin 4.8M 4.8M 0.0058 5.5K 4M 5.7M
web-Stanford 11.3M 11.3M 0.0023 14.8K 3.7M 18.8M
web-Google 13.3M 13.4M 0.0029 25.2K 11.7M 15M

web-BerkStan 64.6M 65M 0.0063 39.8K 45.5M 84.6M

Path. Length two NΛ

NΛ N̂Λ
|N̂Λ−NΛ|

NΛ
SSize LB UB

socfb-CMU 37.4M 37.3M 0.0018 1.7K 32.6M 42M
socfb-UCLA 107.1M 107.8M 0.0060 5K 100.1M 115.42M

socfb-Wisconsin 121.4M 121.2M 0.0018 5.5K 108.9M 133.4M
web-Stanford 3.9T 3.9T 0.0004 14.8K 3.6T 4.2T
web-Google 727.4M 724.3M 0.0042 25.2K 677.1M 771.5M

web-BerkStan 27.9T 27.9T 0.0002 39.8K 26.5T 29.3T

Global Clustering α

α α̂ |α̂−α|
α

SSize LB UB
socfb-CMU 0.18526 0.18574 0.00260 1.7K 0.14576 0.22572
socfb-UCLA 0.14314 0.14363 0.00340 5K 0.12239 0.16487

socfb-Wisconsin 0.12013 0.12101 0.00730 5.5K 0.10125 0.14077
web-Stanford 0.00862 0.00862 0.00020 14.8K 0.00257 0.01467
web-Google 0.05523 0.05565 0.00760 25.2K 0.04825 0.06305

web-BerkStan 0.00694 0.00698 0.00680 39.8K 0.00496 0.00900

5.1 Performance Analysis
We proceed by first demonstrating the accuracy of the proposed

estimators for the different graph statistics we discuss in this paper
across various social and web networks. Given a sample K̂ ⊂ K
(collected by gSHT Algorithm 2), we consider the absolute relative
error (i.e., |E[est]−Actual|

Actual ) as a measure of how far is the estimated
statistic from the actual graph statistic of interest, where E[est] is
the mean estimated value across 100 independent runs. Table 3
provides the estimated values in comparison to the actual statis-
tics when the sample size is ≤ 40K with p, q = 0.005 for web-
BerkStan and p = 0.005, q = 0.008 otherwise. We summarize
below our main findings from Table 3:

• For edge count (NK ) estimates, we observe that the relative
error is in the range of 0.03% – 0.5% across all graphs.

• For triangle count (NT ) estimates, we observe that the rela-
tive error is in the range of 0.03% – 0.95% across all graphs.

• For the number of connected paths of length two (NΛ), we
observe that the relative error of the estimates is in the range
of 0.02% – 0.6% across all graphs.

• For clustering coefficient (α) estimates, we observe that the
relative error is in the range of 0.02% – 0.76% across all
graphs.

• Finally, we observe that the highest error is in the triangle
count estimates and yet it is still ≤ 1%.

5.2 Confidence Bounds
Having selected a sample that can be used to estimate the actual

statistic, it is also desirable to construct a confidence interval within
which we are sufficiently sure that the actual graph statistic of inter-
est lies. We construct a 95% confidence interval for the estimates
of edge (NK ), triangle (NT ), connected paths of length two (NΛ)
counts, and clustering coefficient (α) as follows,

est± 1.96
√

Var(est) (23)

where the estimates ‘est’ and ‘Var(est)’ are computed using the
equations of the unbiased estimators of counts and their variance as
discussed in Section 3. For example, the 95% confidence interval
for the edge count is,

N̂K ± 1.96

√
Var(N̂K) (24)

where UB = N̂K+1.96

√
Var(N̂K), LB = N̂K−1.96

√
Var(N̂K)

are the upper and lower bounds for the edge count respectively.
Table 3 provides the 95% upper and lower bounds (i.e., UB,LB)

for the sample when the sample size is ≤ 40K edges. We observe
that the actual statistics across all different graphs lie in between
the bounds of the confidence interval (i.e., LB ≤ Actual ≤ UB).
Note that the sample is collected using gSHT Algorithm 2.

Additionally, we study the properties of the sampling distribution
of our proposed framework (gSH) as we change the sample size.
Figure 1 shows the sampling distribution as we increase the sam-
ple size (for all possible settings of p, q in the range 0.005–0.1 as
described previously). More specifically, we plot the fraction E[est]

Actual
(represented by blue diamond symbols in the figure), where E[est]
is the mean estimated value across 100 independent runs. Further,
we plot the fractions UB

Actual , and LB
Actual (represented by green circle

symbols in the figure). These plots show the sampling distribution
of all statistics for socfb-UCLA, and socfb-Wisconsin graphs.
We now summarize the findings that we observe from Figure 1:

• The sampling distribution is centered and balanced over the
red line (yaxis = 1) which represents the actual value of the
graph statistic. This shows the unbiased properties of the
estimators for the four graph quantities of interest that we
discussed in Section 2.

• The upper and lower bounds contain the actual value (repre-
sented by the red line) for different combinations of p, q.

• As we increase the sample size, the bounds converge to be
more concentrated over the actual value of the graph statistic
(i.e, the estimated variance is decreasing as we increase the
sample size).

• The confidence intervals for edge counts are small in the
range of 0.98–1.02.

• The confidence intervals for triangle counts and clustering
coefficient are larger compared to other graph statistics (in
the range of 0.87–1.12).

• Samples with size = 40K edges (dashed vertical line) pro-
vide a reasonable tradeoff between sample size and unbiased
estimates with low variance.



10
4

10
5

0.95

1

1.05
socfb−UCLA

N̂
K
/
N

K

Sample Size (Edges)

(a) Edges

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−UCLA

N̂
T
/
N

T

Sample Size (Edges)

(b) Triangles

10
4

10
5

0.9

0.95

1

1.05

1.1
socfb−UCLA

N̂
Λ
/
N

Λ

Sample Size (Edges)

(c) Path len.2

10
4

10
5

0.95

1

1.05
socfb−Wisconsin

N̂
K
/
N

K

Sample Size (Edges)

(d) Edges

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−Wisconsin

N̂
T
/N

T

Sample Size (Edges)

(e) Triangles

10
4

10
5

0.9

0.95

1

1.05

1.1
socfb−Wisconsin

N̂
Λ
/N

Λ

Sample Size (Edges)

(f) Path len.2

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−UCLA

α̂
/
α

Sample Size (Edges)

(g) Clust.

10
4

10
5

0.85

0.9

0.95

1

1.05

1.1

1.15
socfb−Wisconsin

α̂
/
α

Sample Size (Edges)

(h) Clust.
Figure 1: Convergence of the estimates (NK , NT , NΛ, α, upper and lower bounds) for socfb-UCLA and socfb-Wisconsin graphs, for
all possible samples with p, q in the range 0.005–0.1. Diamonds (Blue): E[est]

Actual . Circles (Green): UB
Actual ,

LB
Actual . Square (Orange): refers

to the sample in Table 3. Dashed vertical line (Grey): refers to the sample at 40K edges

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

web−Google

 

 

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008 

0.01

0.03

0.05

0.08 

0.1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

web−Stanford

 

 

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008 

0.01

0.03

0.05

0.08 

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

socfb−Wisconsin

 

 

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008 

0.01

0.03

0.05

0.08 

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro
b
a
b
il
it
y
(q
)

Probability (p)

socfb−CMU

 

 

0.005 0.008 0.01 0.03 0.05 0.08 0.1

0.005

0.008 

0.01

0.03

0.05

0.08 

0.1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2: Sampling Fraction ( SSize
NK

) as p, q changes in the range ‘0.005–0.1’ for web and social graphs (ordered from sparse→ dense).



Table 4: Coverage Probability γ for 95% conf. interval
graph γNK γNT γNΛ γα

socfb-CMU 0.94 0.95 0.96 0.92
socfb-UCLA 0.96 0.95 0.95 0.92

socfb-Wisconsin 0.95 0.95 0.96 0.95
web-Stanford 0.97 0.92 0.95 0.92
web-Google 0.95 0.93 0.95 0.95

web-BerkStan 0.96 0.94 0.93 0.93

Table 5: The relative error and sample size of Jha et al. [20]
in comparison to gSHT for triangle count estimation

Jha et al. [20] gSHT

graph |N̂T−NT |
NT

SSize |N̂T−NT |
NT

SSize

web-Stanford ≈ 0.07 40K 0.0023 14.8K
web-Google ≈ 0.04 40K 0.0029 25.2K
web-BerkStan ≈ 0.12 40K 0.0063 39.8K

• Thus, we conclude that the sampling distribution of the pro-
posed framework has many desirable properties of unbiased-
ness and low variance as we increase the sample size.

Note that in Figure 1, we use a square (with orange color) to refer
to the sample reported in Table 3. We also found similar obser-
vations for the rest of the graphs (plots are omitted due to space
constraints).

In addition to the analysis above, we compute the exact coverage
probability γ of the 95% confidence as follows,

γ = P(LB ≤ Actual ≤ UB) (25)

For each p = pi, q = qi, we compute the proportion of samples
in which the actual statistic lies in the confidence interval across
100 independent sampling experiments gSHT (pi, qi). We vary p, q
in the range of 0.005–0.01, and for each possible combination of
p, q (e.g., p = 0.005, q = 0.008), we compute the exact coverage
probability γ. Table 4 provides the mean coverage probability with
p, q = {0.005, 0.008, 0.01} for all different graphs. Note γNK ,
γNT , γNΛ , and γα indicate the exact coverage probability of edge,
triangle, paths of length two counts, and clustering coefficient re-
spectively. We observe that the nominal 95% confidence interval
holds to a good approximation, as γ ≈ 95% across all graphs.

5.3 Comparison to Previous Work
We compare to the most recent research done on triangle count-

ing by Jha et al. [20]. Jha et al. proposed a Streaming-Triangles al-
gorithm to estimate the triangle counts. Their algorithm maintains
two data structures. The first data structure is the edge reservoir
and used to maintain a uniform random sample of edges as they
streamed in. The second data structure is the wedge (path length
two) reservoir and used to select a uniform sample of wedges cre-
ated by the edge reservoir. The algorithm proceeds in a reservoir
sampling fashion as a new edge et is streaming in. Then, edge
et gets the chance to be sampled and replace a previously sam-
pled edge with probability 1/t. Similarly, a randomly selected new
wedge (formed by et) replaces a previously sampled wedge from
the wedge reservoir. Table 5 provides a comparison between our
proposed framework (gSH) and the Streaming-Triangles algorithm

proposed by Jha et al. [20]. Note that we compare with the results
reported in their paper.

From Table 5, we observe that across the three web graphs, our
proposed framework produces a relative error that is orders of mag-
nitude smaller than the error produced by the Streaming-Triangles
algorithm proposed in [20], and also uses a small(er) overhead
storage (in most of the graphs). We note that Jha et al. [20] com-
pares to other state of the art algorithms and shows that they are
not practical and produce a very large error; see Section 6 for more
details.

We have also compared to the work of Pavan et al. [25] and found
their algorithm needs to store estimators, each of which stores at
least one edge (≈ 36 bytes per estimator). Their algorithm also
needs at least 128K estimators to obtain good results. On the other
hand, gSHT used orders of magnitude less storage to achieve even a
better performance (results were omitted due to space constraints).

5.4 Effect of p, q on Sampling Rate
While Figure 1 shows that the sampling distribution of the pro-

posed framework is unbiased regardless the choice of p, q, the ques-
tion as to what effect the choice of p, q has on the sample size still
needs to be explored. In this section, we study the effect of the
choice of parameter settings on the fraction of edges sampled from
the graph.

Figure 2 shows the fraction of sampled edges using gSHT Al-
gorithm 2, as we vary p, q in the range of 0.005–0.1 for two web
graphs and two social Facebook graphs. Note that the graphs are
ordered by their density (see Table 2) going from the most sparse
to the most dense graph. We observe that when q ≤ 0.01, regard-
less the choice of p, the fraction of sampled edges is in the range
of 0.5% – 2.5% of the total number of edges in the graph. We also
observe that as q goes from 0.01 to 0.03, the fraction of sampled
edges would be in the range of 2.75% – 5%. These observations
hold for all the graphs we studied.

On the other hand, as q goes from 0.03 to 0.1, the fraction of
sampled edges depends on whether the graph is dense or sparse.
For example, for the web-Google graph, as q goes from 0.03 to
0.1, the fraction of sampled edges goes from 5% to 15%. Also, for
the web-Stanford graph, as q goes from 0.03 to 0.1, the fraction
of sampled edges goes from 5% to 25%. However, for the most
dense graph we have in this paper (socfb-CMU), the fraction of
sampled edges goes from 5% to 31%. Note that when we tried
q = 1, regardless the choice of p, more than 80% of the edges were
sampled.

Since p is the probability of sampling a fresh edge (not adjacent
to a previously sampled edge), one could think of p as the probabil-
ity of random jumps (similar to random walk methods) to explore
unsampled regions in the graph. On the other hand, q is the prob-
ability of sampling an edge adjacent to previous edges. Therefore,
one could think of q as the probability of exploring the neighbor-
hood of previously sampled edges (similar to the forward probabil-
ity in Forest Fire sampling).

From all the discussion above, we conclude that using a small
p, q settings (i.e., ≤ 0.008) is better to control the fraction of sam-
pled edges, and also recommended since the sampling distribution
of the proposed framework is unbiased regardless the choice of p, q
as we show in Figure 1 (also see Section 2). However, if a tight
confidence interval is needed, then increasing p, q helps to reduce
variance.

5.5 Implementation Issues
In practice, statistical variance estimators are costly to compute.

In this paper, we provide an efficient parallel procedure to compute



Table 6: Computation time (in seconds) of graph statistics
for the full graph versus the sample output of gSHT

Full Graph Sampled Graph

graph Time Graph size Time SSize

web-Stanford 19.68 1.9M 0.13 14.8K
web-Google 5.05 4.3M 0.55 25.2K
web-BerkStan 113.9 6.6M 1.05 39.8K

the variance estimate. As an example, we illustrate this for the task
of computing the variance of the triangle estimate (V ar(N̂T ) from
Section 3.3). Consider any pair of triangles τ and τ ′. Assuming τ
and τ ′ are not identical, the covariance of τ and τ ′ is greater than
zero (i.e., Cov(τ, τ ′) > 0), if and only if the two triangles are inter-
secting in one edge e(τ, τ ′). Since two intersecting triangles have
either one edge in common or are identical, we can find intersect-
ing triangles by finding all triangles incident to a particular edge
e. In this case, the intersection probability of the two triangles is
P (τ ∩ τ ′) = P (e(τ, τ ′)). Note that if τ and τ ′ are identical, then
the computation is straightforward. The procedure is very simple
as follows,

• Given a sample set of edges K̂ ⊂ K, for each edge e ∈ K̂

– find the set of all triangles ‘Te’ incident to e
– for each pair of triangles (τ, τ ′), where τ, τ ′ ∈ Te, and
τ 6= τ ′, compute the Cov(τ, τ ′) such that P (τ ∩ τ ′) =
P (e(τ, τ ′))

Since, the computation of each edge is independent of other
edges, we parallelize the computation of the variance estimators.
Moreover, since the computation of triangle counts and paths of
length two can themselves be parallelized, we compare the total
elapsed time in seconds used to compute these counts on both the
full graph and a sampled graph of size ≤ 40K edges. Table 6 pro-
vide the results of this comparison for the three web graphs. Note
that in the case of the sampled graph, we report the sum of the to-
tal computations of both the variance estimators and expected val-
ues of the triangle and paths of length two count statistics. Also,
note that we use the sample reported in Table 3 for these computa-
tions. The results show a significant reduction in the time needed
to compute triangles and paths of length two counts. For example,
consider the web-BerkStan graph, where the total time is reduced
from 113 seconds to 1.05 seconds. Note that all the computations
of Table 6 are performed on a MacPro laptop 2.9GHZ Intel Core i7
with 8GB memory.

6. RELATED WORK
In this section, we discuss the related work on the problem of

large-scale graph analytics and their applications. Generally speak-
ing, there are two bodies of work related to this paper: (i) graph
analytics in the graph stream setting, and (ii) graph analytics in the
non-streaming setting (e.g. using MAPREDUCE). In this paper, we
propose a generic stream sampling framework for big-graph ana-
lytics, called Graph Sample and Hold (gSH), that works in a single
pass over the stream. Therefore, we focus on the related work for
graph analytics in the graph stream setting.

Graph Analysis Using Streaming Algorithms.
Before exploring the literature of graph stream analytics, we

briefly review the literature in data stream analysis and mining

that may not contain graph data. For example, for sequence sam-
pling (e.g., reservoir sampling) [34, 6], for computing frequency
counts [24], and for mining concept drifting data streams [16]. Ad-
ditionally, the idea of sample and hold (SH) was introduced in [15]
for unbiased sampling of network data with integral weights. Sub-
sequently, other work explored adaptive SH, and SH with signed
updates [11, 12]. Nevertheless, none of this work has considered
the framework of sample and hold (SH) for social and information
networks. In this paper, however, we propose the framework of
graph sample and hold (gSH) for big-graph analytics.

There has been an increasing interest in mining, analysis, and
querying of massive graph streams as a result of the proliferation
of graph data (e.g., social networks, emails, IP traffic, Twitter hash-
tags). For example, to count triangles [20, 25, 7, 10, 8, 21], finding
common neighborhoods [9], estimating pagerank values [27], and
characterizing degree sequences in multi-graph streams [13]. In the
data mining field, there is the work done on clustering and outlier
detection in graph streams [1, 2].

Much of this work has used various sampling schemes to sam-
ple from the stream of graph edges [4]. Surprisingly, the majority
of this work has focused primarily on sampling schemes that can
be used to estimate certain graph properties (e.g. triangle counts),
while much less is known for the case when we need a generic ap-
proach to estimate various graph properties with the same sampling
scheme with minimum assumptions.

For example, the work done in [10] proposed an algorithm with
space bound guarantees for triangle counting and clustering esti-
mation in the incidence stream model where all edges incident to
a node are arriving in order together. However, in the incidence
stream model, counting triangles is a relatively easy problem, and
counting the number of paths of length two is simply straightfor-
ward. On the other hand, it has been shown that these bounds
and accurate estimates will no longer hold in the case of adjacency
stream model, where the edges arrive arbitrarily with no particular
order [20, 25].

Another example, the work done Jha et al. in [20] proposed a
practical, single pass, O(

√
n)-space streaming algorithm specifi-

cally for triangle counting and clustering estimation with additive
error guarantee (as opposed to other algorithms with relative error
guarantee). Although, the algorithm is practical and approximates
the triangle counts accurately at a sample size of 40K edges, their
method is specifically designed for triangle counting. Nevertheless,
we compare to the results of triangle counts reported in [20], and
we show that our framework is not only generic but also produces
errors with orders of magnitude less than the algorithm in [20], and
with a small(er) storage overhead in many times.

More recently, Pavan et al. proposed a space-efficient stream-
ing algorithm for counting and sampling triangles in [25]. This
algorithm works in a single pass streaming fashion with order
O(NK∆/NT )-space, where ∆ is the maximum degree of the graph.
However, this algorithm needs to store estimators (i.e., wedges that
may form potential triangles), and each of these estimators stores
at least one edge. In their paper, they show that they need at least
128K estimators (i.e., more than 128K edges), to obtain accurate
results (i.e., large storage overhead compared to those in this pa-
per).

Other semi-streaming algorithms were proposed for triangle count-
ing, such as the work in [8], however, they are not practical and
produce large error as discussed and analyzed by the work in [25].

Horvitz-Thompson estimation was proposed for social networks
by Frank [17], including applications to subgraph sampling, but
limited to a model of simple random sampling of vertices without
replacement.



Graph Analysis Using Static and Parallel Algorithms.
We briefly review other research for graph analysis in non-streaming

setting (i.e., static). For example, exact counting of triangles with
runtime O(NK

3/2) [28], or approximately by sampling edges as
in [33]. Although not working in a streaming fashion, the algo-
rithm in [33] uses unbiased estimators of triangle counts similar
to our work. Moreover, other algorithms were proposed based on
wedge sampling and proved to be accurate in practice, such as the
work in [30]. More recently, the work done in [26] proposed a
parallel framework for finding the maximum clique.

Finally, there has been an increasing interest in the general prob-
lem of network sampling. For a detailed survey and comparison,
see [4]. For example, to obtain a representative subgraph [22, 4],
and to preserve the community structure [23], and other sampling
goals [14, 5].

7. CONCLUSION
In this paper, we presented a generic framework for big-graph

analytics called graph sample and hold (gSH). The gSH frame-
work samples from massive graphs sequentially in a single pass,
one edge at a time, while maintaining a small state typically less
than 1% of the total number of edges in the graph. Our contribu-
tions can be summarized in the following points:

• We show how to produce unbiased estimators and their vari-
ance for four specific graph quantities of interest to estimate
within the framework. Further, we show how to obtain con-
fidence bounds using the variance unbiased estimators.
• We conducted several experiments on real world graphs, such

as social Facebook graphs, and web graphs. The results show
that the relative error ranging from 0.02% to 0.95% for a
sample with ≤ 40K edges. Moreover, the results show that
the sampling distribution is centered and balanced over the
actual values of the four graph quantities of interest, with
tight error bounds as the sample size increases.
• We compare to the state of the art and our proposed frame-

work has a relative error orders of magnitude less than the
Streaming-Triangles algorithm proposed in [20], as well as
with a small(er) overhead storage (in most of the graphs).
• We show how to parallelize and efficiently compute the un-

biased variance estimators, and we discuss the significant re-
ductions in computation time that can be achieved by gSH
framework.

In future work, we aim to extend gSH to other graph properties
such as cliques, communities, and others.

Acknowledgments
This research is supported by NSF under contract number(s) IIS-1017898
and IIS-1219015. The U.S. Government is authorized to reproduce and dis-
tribute reprints for governmental purposes notwithstanding any copyright
notation hereon.

8. REFERENCES
[1] AGGARWAL, C., ZHAO, Y., AND YU, P. On clustering graph

streams. In SDM (2010), pp. 478–489.
[2] AGGARWAL, C., ZHAO, Y., AND YU, P. Outlier detection in graph

streams. In ICDE (2011), pp. 399–409.
[3] AHMED, N. K., NEVILLE, J., AND KOMPELLA, R. Network

sampling designs for relational classification. In ICWSM (2012).
[4] AHMED, N. K., NEVILLE, J., AND KOMPELLA, R. Network

sampling: from static to streaming graphs. (to appear) TKDD (2013).
[5] AL HASAN, M., AND ZAKI, M. Output space sampling for graph

patterns. Proceedings of the VLDB Endowment 2, 1 (2009), 730–741.

[6] BABCOCK, B., DATAR, M., AND MOTWANI, R. Sampling from a
moving window over streaming data. In SODA (2002), pp. 633–634.

[7] BAR-YOSSEF, Z., KUMAR, R., AND SIVAKUMAR, D. Reductions
in streaming algorithms with an application to counting triangles in
graphs. In SODA (2002), pp. 623–632.

[8] BECCHETTI, L., BOLDI, P., CASTILLO, C., AND GIONIS, A.
Efficient semi-streaming algorithms for local triangle counting in
massive graphs. In KDD (2008), pp. 16–24.

[9] BUCHSBAUM, A., GIANCARLO, R., AND WESTBROOK, J. On
finding common neighborhoods in massive graphs. Theoretical
Computer Science 299, 1 (2003), 707–718.

[10] BURIOL, L., FRAHLING, G., LEONARDI, S.,
MARCHETTI-SPACCAMELA, A., AND SOHLER, C. Counting
triangles in data streams. In PODS (2006), pp. 253–262.

[11] COHEN, E., CORMODE, G., AND DUFFIELD, N. Don’t let the
negatives bring you down: sampling from streams of signed updates.
In SIGMETRICS 40, 1 (2012), 343–354.

[12] COHEN, E., DUFFIELD, N., KAPLAN, H., LUND, C., AND
THORUP, M. Algorithms and estimators for accurate summarization
of internet traffic. In SIGCOMM (2007), pp. 265–278.

[13] CORMODE, G., AND MUTHUKRISHNAN, S. Space efficient mining
of multigraph streams. In PODS (2005), pp. 271–282.

[14] DASGUPTA, A., KUMAR, R., AND SIVAKUMAR, D. Social
sampling. In KDD (2012), pp. 235–243.

[15] ESTAN, C., AND VARGHESE, G. New directions in traffic
measurement and accounting. In SIGCOMM (2002), pp. 323–336.

[16] FAN, W. Streamminer: a classifier ensemble-based engine to mine
concept-drifting data streams. In VLDB (2004), pp. 1257–1260.

[17] FRANK, O. Sampling and estimation in large social networks. Social
Networks 1, 1 (1978), 91–101.

[18] GIBBONS, P., AND MATIAS, Y. New sampling-based summary
statistics for improving approximate query answers. In SIGMOD
(1998).

[19] HORVITZ, D. G., AND THOMPSON, D. J. A generalization of
sampling without replacement from a finite universe. Journal of the
American Statistical Association 47, 260 (1952), 663–685.

[20] JHA, M., SESHADHRI, C., AND PINAR, A. A space efficient
streaming algorithm for triangle counting using the birthday paradox.
In KDD (2013), pp. 589–597.

[21] JOWHARI, H., AND GHODSI, M. New streaming algorithms for
counting triangles in graphs. In COCOON. 2005, pp. 710–716.

[22] LESKOVEC, J., AND FALOUTSOS, C. Sampling from large graphs.
In KDD (2006), pp. 631–636.

[23] MAIYA, A. S., AND BERGER-WOLF, T. Y. Sampling Community
Structure. In WWW (2010), pp. 701–710.

[24] MANKU, G. S., AND MOTWANI, R. Approximate Frequency
Counts over Data Streams. In VLDB (2002), pp. 346–357.

[25] PAVAN, A., TANGWONGSAN, K., TIRTHAPURA, S., AND WU,
K.-L. Counting and sampling triangles from a graph stream. VLDB
6, 14 (2013), 1870–1881.

[26] ROSSI, R. A., GLEICH, D. F., GEBREMEDHIN, A. H., AND
PATWARY, M. A. Fast maximum clique algorithms for large graphs.
In WWW (2014).

[27] SARMA, A. D., GOLLAPUDI, S., AND PANIGRAHY, R. Estimating
PageRank on Graph Streams. In PODS (2008), pp. 69–78.

[28] SCHANK, T. Algorithmic aspects of triangle-based network analysis.
[29] SCHERVISH, M. J. Theory of Statistics. Springer, 1995.
[30] SESHADHRI, C., PINAR, A., AND KOLDA, T. G. Triadic measures

on graphs: The power of wedge sampling. In SDM (2013).
[31] SMITHA, KIM, I., AND REDDY, A. Identifying long term high rate

flows at a router. In High Performance Computing (2001).
[32] TRAUD, A. L., MUCHA, P. J., AND PORTER, M. A. Social

structure of facebook networks. Physica A: Statistical Mechanics and
its Applications 391, 16 (2012), 4165–4180.

[33] TSOURAKAKIS, C. E., KANG, U., MILLER, G. L., AND
FALOUTSOS, C. Doulion: counting triangles in massive graphs with
a coin. In KDD (2009), pp. 837–846.

[34] VITTER, J. Random sampling with a reservoir. TOMS 11 (1985).
[35] WILLIAMS, D. Probability with Martingales. Cambridge University

Press, 1991.


	Introduction
	Sampling, Estimation, Accuracy
	Relation to Sample and Hold
	Contributions and Outline

	Framework for Graph Sampling
	Graph Stream Model
	Edge Sampling Model
	Subgraph Estimation

	Subgraph Sum Estimation
	General Estimation and Variance
	Edges
	Triangles
	Connected Paths of Length 2
	Clustering Coefficient
	Nodes

	Graph Sample and Hold
	Algorithms
	Illustration with gSH(p,1)

	Experiments and Evaluation
	Performance Analysis
	Confidence Bounds
	Comparison to Previous Work
	Effect of p,q on Sampling Rate
	Implementation Issues

	Related Work
	Conclusion
	References

